def on_click(self, event): if event.inaxes == self.ax: self.params = model.parameters_one() self.g_inh = model.params['g_inh_0'] length = self.system.N_output(self.CYCLES) self.t = self.system.dt * np.arange(length) self.trajectory = np.zeros((length, self.num_osci), float) for i in xrange(self.num_osci): self.li[i].set_data(self.t, self.trajectory[:, i] - i * 2.) ticks = np.asarray(self.t[::self.t.size / 10], dtype=int) self.ax.set_xticks(ticks) self.ax.set_xticklabels(ticks) self.ax.set_xlim(self.t[0], self.t[-1]) self.fig.canvas.draw() self.anim = animation.FuncAnimation( self.fig, self.compute_step, init_func=self.init, frames=self.trajectory.shape[0], interval=0, blit=True, repeat=False)
def on_click(self, event): if event.inaxes == self.ax: self.params = model.parameters_one() self.g_inh = model.params["g_inh_0"] length = self.system.N_output(self.CYCLES) self.t = self.system.dt * np.arange(length) self.trajectory = np.zeros((length, self.num_osci), float) for i in xrange(self.num_osci): self.li[i].set_data(self.t, self.trajectory[:, i] - i * 2.0) ticks = np.asarray(self.t[:: self.t.size / 10], dtype=int) self.ax.set_xticks(ticks) self.ax.set_xticklabels(ticks) self.ax.set_xlim(self.t[0], self.t[-1]) self.fig.canvas.draw() self.anim = animation.FuncAnimation( self.fig, self.compute_step, init_func=self.init, frames=self.trajectory.shape[0], interval=0, blit=True, repeat=False, )
def compute_step(self, idx): self.params = model.parameters_one() self.g_inh = model.params['g_inh_0'] model.step_n_em(self.state, self.params, self.g_inh, self.system.dt / float(self.system.stride), self.system.stride) self.trajectory[idx, :] = self.state[::model.N_EQ1] if self.pulsed: self.trajectory[idx - 1, self.pulsed - 1] = -0.1 self.trajectory[idx, self.pulsed - 1] = 0.1 self.pulsed = 0 for i in xrange(self.num_osci): self.li[i].set_data(self.t, self.trajectory[:, i] - 2. * i) return self.li
def compute_step(self, idx): self.params = model.parameters_one() self.g_inh = model.params["g_inh_0"] model.step_n_em( self.state, self.params, self.g_inh, self.system.dt / float(self.system.stride), self.system.stride ) self.trajectory[idx, :] = self.state[:: model.N_EQ1] if self.pulsed: self.trajectory[idx - 1, self.pulsed - 1] = -0.1 self.trajectory[idx, self.pulsed - 1] = 0.1 self.pulsed = 0 for i in xrange(self.num_osci): self.li[i].set_data(self.t, self.trajectory[:, i] - 2.0 * i) return self.li