flags.DEFINE_string('network', 'network.py', 'network file name') flags.DEFINE_string('data_dir', None, 'dataset location') flags.DEFINE_integer('small_chunk', 1, 'accumulate gradients.') flags.DEFINE_string('memory_saving_method', None, 'setup the memory saving method, 1. recomputing 2. TBD ') flags.DEFINE_enum('lr_policy', 'multistep', ('multistep', 'exp'), 'learning_rate policy') flags.DEFINE_boolean('aug_flip', True, 'whether randomly flip left or right dataset') flags.DEFINE_integer( 'stop_accu_epoch', 0, 'early stop when accuracy does not increase 1% for' 'numbers of epochs') flags.DEFINE_boolean('save_stop', True, 'whether to save checkpoint when killing process') flags.DEFINE_list( 'aug_list', [], 'Specify a list of augmentation function names to apply ' 'during training.') import benchmark_cnn import memory_saving as ms from myelindl.core import benchmark_handler import logging logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO) flags.define_flags() for name in flags.param_specs.keys(): absl_flags.declare_key_flag(name)
int(1e6), 'Maximum number of examples to evaluate in each evaluation loop.') flags.DEFINE_integer('mbsz', 128, 'Minibatch size during training.') flags.DEFINE_enum('optimizer', 'momentum', ['adam', 'momentum'], 'Optimizer name') flags.DEFINE_integer('num_conv_layers', 0, 'Number of convolutional hidden layers.') flags.DEFINE_integer('max_strides', 1, 'When using convolutional layers and parameter tuning, ' 'the maximum stride to test.') flags.DEFINE_integer('max_rates', 1, 'When using convolutional layers and parameter tuning, ' 'the maximum dilation rate to test.') flags.DEFINE_integer('num_fc_layers', None, 'Number of fully connected hidden layers.') flags.DEFINE_list( 'target_names', [output_layers.TARGETS_ALL_OUTPUTS], 'List of count targets to train against. By default, train against all ' 'counts.') flags.DEFINE_enum('preprocess_mode', 'PREPROCESS_SKIP_ALL_ZERO_COUNTS', [ data.PREPROCESS_SKIP_ALL_ZERO_COUNTS, data.PREPROCESS_INJECT_RANDOM_SEQUENCES, data.PREPROCESS_ALL_COUNTS ], 'How to preprocess input data for training purposes.') flags.DEFINE_list('input_features', [ 'SEQUENCE_ONE_HOT' ], 'List of features to use as inputs to the model. Valid choices: %r' % _VALID_INPUT_FEATURES) flags.DEFINE_integer( 'kmer_k_max', 4, 'Maximum k-mer size for which to calculate counts if using ' 'SEQUENCE_KMER_COUNT as a feature.') flags.DEFINE_float(
'Directory of all subgraphs, each file is a subgraph') flags.DEFINE_string('graph', 'graph.txt', 'Edge list of the complete graph') flags.DEFINE_string('kernel', 'kernel.json', 'Kernels to be matched') flags.DEFINE_string('query', 'query', 'Used to create query files used by SubMatch') flags.DEFINE_string('meta', 'meta/', 'Directory of matched instances of kernels') flags.DEFINE_string('data', 'data.txt', None) flags.DEFINE_string('feature', 'feature.txt', None) flags.DEFINE_string('label', 'label.txt', None) flags.DEFINE_boolean('use_feature', True, 'Use feature or not') flags.DEFINE_boolean('use_embedding', True, 'Use embedding or not') flags.DEFINE_integer('feat_dim', -1, None) flags.DEFINE_list( 'node_dim', [256], 'Dimension of hidden layers between feature and node embedding') flags.DEFINE_list( 'instance_h_dim', [256], 'Dimension of hidden layers between node embedding and instance embedding, last element is the dimension of instance embedding' ) flags.DEFINE_list( 'graph_h_dim', [128], 'Dimension of hidden layers between instance embedding and subgraph embedding, last element is the dimension of subgraph embedding' ) flags.DEFINE_float('keep_prob', 0.6, 'Used for dropout') flags.DEFINE_list('kernel_sizes', [1], 'List of number of nodes in kernel') flags.DEFINE_string('pooling', 'max', '[max, average, sum]') flags.DEFINE_integer('epoch', 4, None)