def run(self, input_source): ''' Executes a default predicton workflow ''' # path to endpoint # path to endpoint endpoint = utils.model_path(self.model, self.version) if not os.path.isdir(endpoint): self.conveyor.setError(f'Unable to find model {self.model}, version {self.version}') #LOG.error(f'Unable to find model {self.model}') if not self.conveyor.getError(): # uses the child classes within the 'model' folder, # to allow customization of # the processing applied to each model modpath = utils.module_path(self.model, self.version) idata_child = importlib.import_module(modpath+".idata_child") apply_child = importlib.import_module(modpath+".apply_child") odata_child = importlib.import_module(modpath+".odata_child") # run idata object, in charge of generate model data from input try: idata = idata_child.IdataChild(self.param, self.conveyor, input_source) except: LOG.warning ('Idata child architecture mismatch, defaulting to Idata parent') idata = Idata(self.param, self.conveyor, input_source) idata.run() LOG.debug(f'idata child {type(idata).__name__} completed `run()`') if not self.conveyor.getError(): # make sure there is X data if not self.conveyor.isKey('xmatrix'): LOG.debug(f'Failed to compute MDs') self.conveyor.setError(f'Failed to compute MDs') if not self.conveyor.getError(): # run apply object, in charge of generate a prediction from idata try: apply = apply_child.ApplyChild(self.param, self.conveyor) except: LOG.warning ('Apply child architecture mismatch, defaulting to Apply parent') apply = Apply(self.param, self.conveyor) apply.run() LOG.debug(f'apply child {type(apply).__name__} completed `run()`') # run odata object, in charge of formatting the prediction results # note that if any of the above steps failed, an error has been inserted in the # conveyor and odata will take case of showing an error message try: odata = odata_child.OdataChild(self.param, self.conveyor) except: LOG.warning ('Odata child architecture mismatch, defaulting to Odata parent') odata = Odata(self.param, self.conveyor) return odata.run()
def run(self, param_dict): ''' Executes a default predicton workflow ''' metric = None numsel = None cutoff = None # path to endpoint epd = utils.space_path(self.space, self.version) if not os.path.isdir(epd): LOG.error(f'Unable to find space {self.space}') self.conveyor.setError(f'Unable to find space {self.space}, version {self.version}') if self.getVal(param_dict,'smarts') is not None: input_source = param_dict['smarts'] self.param.setVal('input_type', 'smarts') elif self.getVal(param_dict,'infile') is not None: input_source = param_dict['infile'] else: LOG.error(f'Unable to find input_file') self.conveyor.setError('wrong format in the runtime similarity parameters') if 'runtime_param' in param_dict: runtime_param = self.getVal(param_dict, 'runtime_param') if runtime_param is not None: LOG.info (f'runtime parameters: {str(runtime_param)}') try: with open(runtime_param, 'r') as pfile: rtparam = yaml.safe_load(pfile) try: metric = rtparam['similarity_metric'] numsel = rtparam['similarity_cutoff_num'] cutoff = rtparam['similarity_cutoff_distance'] except: LOG.error('wrong format in the runtime similarity parameters') self.conveyor.setError('wrong format in the runtime similarity parameters') except: LOG.error('runtime similarity parameter file not found') self.conveyor.setError('runtime similarity parameter file not found') else: try: metric = param_dict['metric'] numsel = param_dict['numsel'] cutoff = param_dict['cutoff'] except: LOG.error('wrong format in the runtime similarity parameters') self.conveyor.setError('wrong format in the runtime similarity parameters') md = self.param.getVal('computeMD_method') if utils.isFingerprint(md) and len(md) > 1: LOG.warning(f'When using fingerprints, only a single type of MD can be used to build spaces. Selecting {md[0]}') self.conveyor.setWarning(f'When using fingerprints, only a single type of MD can be used to build spaces. Selecting {md[0]}') self.param.setVal('computeMD_method',[md[0]]) if not self.conveyor.getError(): # uses the child classes within the 'space' folder, # to allow customization of # the processing applied to each space modpath = utils.smodule_path(self.space, self.version) idata_child = importlib.import_module(modpath+".idata_child") sapply_child = importlib.import_module(modpath+".sapply_child") odata_child = importlib.import_module(modpath+".odata_child") # run idata object, in charge of generate space data from input try: idata = idata_child.IdataChild(self.param, self.conveyor, input_source) except: LOG.warning ('Idata child architecture mismatch, defaulting to Idata parent') idata = Idata(self.param, self.conveyor, input_source) idata.run() LOG.debug(f'idata child {type(idata).__name__} completed `run()`') if not self.conveyor.getError(): # make sure there is X data if not self.conveyor.isKey('xmatrix'): if not self.conveyor.isKey ('SMARTS'): LOG.debug(f'Failed to compute MDs') self.conveyor.setError(f'Failed to compute MDs') if not self.conveyor.getError(): # run apply object, in charge of generate a prediction from idata try: sapply = sapply_child.SapplyChild(self.param, self.conveyor) except: LOG.warning ('Sapply child architecture mismatch, defaulting to Sapply parent') sapply = Sapply(self.param, self.conveyor) sapply.run(cutoff, numsel, metric) LOG.debug(f'sapply child {type(sapply).__name__} completed `run()`') # run odata object, in charge of formatting the prediction results # note that if any of the above steps failed, an error has been inserted in the # conveyor and odata will take case of showing an error message try: odata = odata_child.OdataChild(self.param, self.conveyor) except: LOG.warning ('Odata child architecture mismatch, defaulting to Odata parent') odata = Odata(self.param, self.conveyor) return odata.run()
def run(self, input_source): ''' Executes a default predicton workflow ''' # path to endpoint endpoint = utils.model_path(self.model, self.version) # if not os.path.isdir(endpoint): # self.conveyor.setError(f'Unable to find model {self.model}, version {self.version}') # #LOG.error(f'Unable to find model {self.model}') # if not self.conveyor.getError(): # uses the child classes within the 'model' folder, # to allow customization of # the processing applied to each model modpath = utils.module_path(self.model, self.version) idata_child = importlib.import_module(modpath+".idata_child") apply_child = importlib.import_module(modpath+".apply_child") odata_child = importlib.import_module(modpath+".odata_child") # run idata object, in charge of generate model data from input try: idata = idata_child.IdataChild(self.param, self.conveyor, input_source) except: LOG.warning ('Idata child architecture mismatch, defaulting to Idata parent') idata = Idata(self.param, self.conveyor, input_source) idata.run() LOG.debug(f'idata child {type(idata).__name__} completed `run()`') if not self.conveyor.getError(): success, results = idata.preprocess_apply() if not success: self.conveyor.setError(results) if not self.conveyor.getError(): # make sure there is X data if not self.conveyor.isKey('xmatrix'): LOG.debug(f'Failed to compute MDs') self.conveyor.setError(f'Failed to compute MDs') # for secret models avoid searching similar compounds space_pkl = os.path.join(endpoint,'space.pkl') if not os.path.isfile(space_pkl): self.param.setVal('output_similar', False) if not self.conveyor.getError(): if self.param.getVal('output_similar') is True: from flame.sapply import Sapply metric = self.param.getVal('similarity_metric') numsel = self.param.getVal('similarity_cutoff_num') cutoff = self.param.getVal('similarity_cutoff_distance') # sapply = Sapply(self.param, self.conveyor) sapply_child = importlib.import_module(modpath+".sapply_child") # run apply object, in charge of generate a prediction from idata try: sapply = sapply_child.SapplyChild(self.param, self.conveyor) except: LOG.warning ('Sapply child architecture mismatch, defaulting to Sapply parent') sapply = Sapply(self.param, self.conveyor) sapply.run(cutoff, numsel, metric) LOG.debug(f'sapply child {type(sapply).__name__} completed `run()`') if not self.conveyor.getError(): # run apply object, in charge of generate a prediction from idata try: apply = apply_child.ApplyChild(self.param, self.conveyor) except: LOG.warning ('Apply child architecture mismatch, defaulting to Apply parent') apply = Apply(self.param, self.conveyor) apply.run() LOG.debug(f'apply child {type(apply).__name__} completed `run()`') # run odata object, in charge of formatting the prediction results # note that if any of the above steps failed, an error has been inserted in the # conveyor and odata will take case of showing an error message try: odata = odata_child.OdataChild(self.param, self.conveyor) except: LOG.warning ('Odata child architecture mismatch, defaulting to Odata parent') odata = Odata(self.param, self.conveyor) return odata.run()
def run(self, input_source): ''' Executes a default predicton workflow ''' # path to endpoint epd = utils.model_path(self.model, 0) if not os.path.isdir(epd): self.conveyor.setError(f'Unable to find model {self.model}') #LOG.error(f'Unable to find model {self.model}') # import ichild classes if not self.conveyor.getError(): # uses the child classes within the 'model' folder, # to allow customization of the processing applied to each model modpath = utils.module_path(self.model, 0) idata_child = importlib.import_module(modpath + ".idata_child") learn_child = importlib.import_module(modpath + ".learn_child") odata_child = importlib.import_module(modpath + ".odata_child") # run idata object, in charge of generate model data from input try: idata = idata_child.IdataChild(self.param, self.conveyor, input_source) except: LOG.warning( 'Idata child architecture mismatch, defaulting to Idata parent' ) idata = Idata(self.param, self.conveyor, input_source) idata.run() LOG.debug(f'idata child {type(idata).__name__} completed `run()`') if not self.conveyor.getError(): # check there is a suitable X and Y if not self.conveyor.isKey('xmatrix'): self.conveyor.setError(f'Failed to compute MDs') if not self.conveyor.isKey('ymatrix'): self.conveyor.setError( f'No activity data (Y) found in training series') if not self.conveyor.getError(): # instantiate learn (build a model from idata) and run it learn = learn_child.LearnChild(self.param, self.conveyor) learn.run() try: learn = learn_child.LearnChild(self.param, self.conveyor) except: LOG.warning( 'Learn child architecture mismatch, defaulting to Learn parent' ) learn = Learn(self.param, self.conveyor) LOG.debug(f'learn child {type(learn).__name__} completed `run()`') # run odata object, in charge of formatting the prediction results # note that if any of the above steps failed, an error has been inserted in the # conveyor and odata will take case of showing an error message try: odata = odata_child.OdataChild(self.param, self.conveyor) except: LOG.warning( 'Odata child architecture mismatch, defaulting to Odata parent' ) odata = Odata(self.param, self.conveyor) return odata.run()
def run(self, input_source): ''' Executes a default chemical space building workflow ''' # path to endpoint epd = utils.space_path(self.space, 0) if not os.path.isdir(epd): self.conveyor.setError(f'Unable to find space {self.space}') #LOG.error(f'Unable to find space {self.space}') # import ichild classes if not self.conveyor.getError(): # uses the child classes within the 'space' folder, # to allow customization of the processing applied to each space modpath = utils.smodule_path(self.space, 0) idata_child = importlib.import_module(modpath + ".idata_child") slearn_child = importlib.import_module(modpath + ".slearn_child") odata_child = importlib.import_module(modpath + ".odata_child") # run idata object, in charge of generate space data from input try: idata = idata_child.IdataChild(self.param, self.conveyor, input_source) except: LOG.warning( 'Idata child architecture mismatch, defaulting to Idata parent' ) idata = Idata(self.param, self.conveyor, input_source) idata.run() LOG.debug(f'idata child {type(idata).__name__} completed `run()`') if not self.conveyor.getError(): success, results = idata.preprocess_create() if not success: self.conveyor.setError(results) if not self.conveyor.getError(): # check there is a suitable X and Y if not self.conveyor.isKey('xmatrix'): self.conveyor.setError(f'Failed to compute MDs') if not self.conveyor.getError(): # instantiate learn (build a space from idata) and run it try: slearn = slearn_child.SlearnChild(self.param, self.conveyor) except: LOG.warning( 'Slearn child architecture mismatch, defaulting to Learn parent' ) slearn = Slearn(self.param, self.conveyor) slearn.run() LOG.debug( f'slearn child {type(slearn).__name__} completed `run()`') # run odata object, in charge of formatting the prediction results # note that if any of the above steps failed, an error has been inserted in the # conveyor and odata will take case of showing an error message try: odata = odata_child.OdataChild(self.param, self.conveyor) except: LOG.warning( 'Odata child architecture mismatch, defaulting to Odata parent' ) odata = Odata(self.param, self.conveyor) return odata.run()
def __init__(self, parameters, conveyor, input_source): Idata.__init__(self, parameters, conveyor, input_source)
def __init__(self, control, ifile): Idata.__init__(self, control, ifile)