def __init__( self, train_transform: Optional[Union[Dict[str, Callable]]] = None, val_transform: Optional[Union[Dict[str, Callable]]] = None, test_transform: Optional[Union[Dict[str, Callable]]] = None, predict_transform: Optional[Union[Dict[str, Callable]]] = None, image_size: int = 256, ): if val_transform: raise_not_supported("validation") if test_transform: raise_not_supported("test") if isinstance(image_size, int): image_size = (image_size, image_size) self.image_size = image_size super().__init__( train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, predict_transform=predict_transform, data_sources={ DefaultDataSources.FILES: ImagePathsDataSource(), DefaultDataSources.FOLDERS: ImagePathsDataSource(), DefaultDataSources.NUMPY: ImageNumpyDataSource(), DefaultDataSources.TENSORS: ImageTensorDataSource(), DefaultDataSources.TENSORS: ImageTensorDataSource(), }, default_data_source=DefaultDataSources.FILES, )
def __init__( self, train_transform: Optional[Dict[str, Callable]] = None, val_transform: Optional[Dict[str, Callable]] = None, test_transform: Optional[Dict[str, Callable]] = None, predict_transform: Optional[Dict[str, Callable]] = None, **data_source_kwargs: Any, ): super().__init__( train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, predict_transform=predict_transform, data_sources={ DefaultDataSources.FIFTYONE: ObjectDetectionFiftyOneDataSource(**data_source_kwargs), DefaultDataSources.FILES: ImagePathsDataSource(), DefaultDataSources.FOLDERS: ImagePathsDataSource(), "coco": COCODataSource(), }, default_data_source=DefaultDataSources.FILES, )
def __init__( self, train_transform: Optional[Dict[str, Callable]] = None, val_transform: Optional[Dict[str, Callable]] = None, test_transform: Optional[Dict[str, Callable]] = None, predict_transform: Optional[Dict[str, Callable]] = None, image_size: Tuple[int, int] = (196, 196), deserializer: Optional[Deserializer] = None, **data_source_kwargs: Any, ): self.image_size = image_size super().__init__( train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, predict_transform=predict_transform, data_sources={ DefaultDataSources.FIFTYONE: ImageFiftyOneDataSource(**data_source_kwargs), DefaultDataSources.FILES: ImagePathsDataSource(), DefaultDataSources.FOLDERS: ImagePathsDataSource(), DefaultDataSources.NUMPY: ImageNumpyDataSource(), DefaultDataSources.TENSORS: ImageTensorDataSource(), }, deserializer=deserializer or ImageClassificationDeserializer(), default_data_source=DefaultDataSources.FILES, )
def __init__( self, train_transform: Optional[Dict[str, Callable]] = None, val_transform: Optional[Dict[str, Callable]] = None, test_transform: Optional[Dict[str, Callable]] = None, predict_transform: Optional[Dict[str, Callable]] = None, ): super().__init__( train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, predict_transform=predict_transform, data_sources={ DefaultDataSources.FILES: ImagePathsDataSource(), DefaultDataSources.FOLDERS: ImagePathsDataSource(), "coco": COCODataSource(), }, default_data_source=DefaultDataSources.FILES, )
def __init__( self, train_transform: Optional[Dict[str, Callable]] = None, val_transform: Optional[Dict[str, Callable]] = None, test_transform: Optional[Dict[str, Callable]] = None, predict_transform: Optional[Dict[str, Callable]] = None, image_size: Tuple[int, int] = (196, 196), ): self.image_size = image_size super().__init__( train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, predict_transform=predict_transform, data_sources={ DefaultDataSources.FILES: ImagePathsDataSource(), DefaultDataSources.FOLDERS: ImagePathsDataSource(), DefaultDataSources.NUMPY: ImageNumpyDataSource(), DefaultDataSources.TENSORS: ImageTensorDataSource(), }, default_data_source=DefaultDataSources.FILES, )