def walk(self, handle, position, direction):
        possible_transitions = self.env.rail.get_transitions(
            *position, direction)
        num_transitions = fast_count_nonzero(possible_transitions)
        if num_transitions == 1:
            new_direction = fast_argmax(possible_transitions)
            new_position = get_new_position(position, new_direction)

            dist = self.env.distance_map.get()[handle, new_position[0],
                                               new_position[1], new_direction]
            return new_position, new_direction, dist, RailEnvActions.MOVE_FORWARD, possible_transitions
        else:
            min_distances = []
            positions = []
            directions = []
            for new_direction in [(direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[new_direction]:
                    new_position = get_new_position(position, new_direction)
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0],
                                                    new_position[1],
                                                    new_direction])
                    positions.append(new_position)
                    directions.append(new_direction)
                else:
                    min_distances.append(np.inf)
                    positions.append(None)
                    directions.append(None)

        a = self.get_action(handle, min_distances)
        return positions[a], directions[a], min_distances[
            a], a + 1, possible_transitions
def fix_inner_nodes(grid_map: GridTransitionMap, inner_node_pos: IntVector2D, rail_trans: RailEnvTransitions):
    """
    Fix inner city nodes by connecting it to its neighbouring parallel track
    :param grid_map:
    :param inner_node_pos: inner city node to fix
    :param rail_trans:
    :return:
    """
    corner_directions = []
    for direction in range(4):
        tmp_pos = get_new_position(inner_node_pos, direction)
        if grid_map.grid[tmp_pos] > 0:
            corner_directions.append(direction)
    if len(corner_directions) == 2:
        transition = 0
        transition = rail_trans.set_transition(transition, mirror(corner_directions[0]), corner_directions[1], 1)
        transition = rail_trans.set_transition(transition, mirror(corner_directions[1]), corner_directions[0], 1)
        grid_map.grid[inner_node_pos] = transition
        tmp_pos = get_new_position(inner_node_pos, corner_directions[0])
        transition = grid_map.grid[tmp_pos]
        transition = rail_trans.set_transition(transition, corner_directions[0], mirror(corner_directions[0]), 1)
        grid_map.grid[tmp_pos] = transition
        tmp_pos = get_new_position(inner_node_pos, corner_directions[1])
        transition = grid_map.grid[tmp_pos]
        transition = rail_trans.set_transition(transition, corner_directions[1], mirror(corner_directions[1]),
                                               1)
        grid_map.grid[tmp_pos] = transition
    return
    def reset(self):
        self.target_positions = {agent.target: 1 for agent in self.env.agents}
        self.edge_positions = defaultdict(
            list
        )  # (cell.position, direction) -> [(start, end, direction, distance)]
        self.edge_paths = defaultdict(
            list)  # (node.position, direction) -> [(cell.position, direction)]

        # First, we find a node by starting at one of the agents and following the rails until we reach a junction
        agent = first(self.env.agents)
        position = agent.initial_position
        direction = agent.direction
        while not self.is_junction(position) and not self.is_target(position):
            direction = first(
                self.get_possible_transitions(position, direction))
            position = get_new_position(position, direction)

        # Now we create a graph representation of the rail network, starting from this node
        transitions = self.get_all_transitions(position)
        root_nodes = {
            t: RailNode(position, t, self.is_target(position))
            for t in transitions if t
        }
        self.graph = {(*position, d): root_nodes[t]
                      for d, t in enumerate(transitions) if t}

        for transitions, node in root_nodes.items():
            for direction in transitions:
                self.explore_branch(node,
                                    get_new_position(position,
                                                     direction), direction)
Esempio n. 4
0
    def conflict(self, handle, pos, movement):
        conflict_handles = [a.handle for a in self.env.agents
                            if pos == a.position and a.handle != handle]
        potential_conflicts = []
        if len(conflict_handles) > 0:
            for conflict_handle in conflict_handles:
                other_direction = self.env.agents[conflict_handle].direction

                other_possible_moves = self.env.rail.get_transitions(*pos, other_direction)
                other_movement = np.argmax(other_possible_moves)

                own_possible_moves = self.env.rail.get_transitions(*pos, movement)
                own_movement = np.argmax(own_possible_moves)

                own_next_pos = get_new_position(pos, own_movement)
                other_next_pos = get_new_position(pos, other_movement)
                conflict = own_next_pos != other_next_pos

                if self._asserts:
                    assert np.all(np.array(own_next_pos) > 0)
                    assert np.all(np.array(other_next_pos) > 0)

                potential_conflicts.append(conflict)

                if conflict:
                    self._conflict_map[handle].append(conflict_handle)

        return np.any(potential_conflicts)
Esempio n. 5
0
def get_valid_move_actions_(agent_direction: Grid4TransitionsEnum,
                            agent_position: Tuple[int, int],
                            rail: GridTransitionMap) -> Set[RailEnvNextAction]:
    """
    Get the valid move actions (forward, left, right) for an agent.

    TODO https://gitlab.aicrowd.com/flatland/flatland/issues/299 The implementation could probably be more efficient
    and more elegant. But given the few calls this has no priority now.

    Parameters
    ----------
    agent_direction : Grid4TransitionsEnum
    agent_position: Tuple[int,int]
    rail : GridTransitionMap


    Returns
    -------
    Set of `RailEnvNextAction` (tuples of (action,position,direction))
        Possible move actions (forward,left,right) and the next position/direction they lead to.
        It is not checked that the next cell is free.
    """
    valid_actions: Set[RailEnvNextAction] = OrderedSet()
    possible_transitions = rail.get_transitions(*agent_position,
                                                agent_direction)
    num_transitions = np.count_nonzero(possible_transitions)
    # Start from the current orientation, and see which transitions are available;
    # organize them as [left, forward, right], relative to the current orientation
    # If only one transition is possible, the forward branch is aligned with it.
    if rail.is_dead_end(agent_position):
        action = RailEnvActions.MOVE_FORWARD
        exit_direction = (agent_direction + 2) % 4
        if possible_transitions[exit_direction]:
            new_position = get_new_position(agent_position, exit_direction)
            valid_actions.add(
                RailEnvNextAction(action, new_position, exit_direction))
    elif num_transitions == 1:
        action = RailEnvActions.MOVE_FORWARD
        for new_direction in [(agent_direction + i) % 4 for i in range(-1, 2)]:
            if possible_transitions[new_direction]:
                new_position = get_new_position(agent_position, new_direction)
                valid_actions.add(
                    RailEnvNextAction(action, new_position, new_direction))
    else:
        for new_direction in [(agent_direction + i) % 4 for i in range(-1, 2)]:
            if possible_transitions[new_direction]:
                if new_direction == agent_direction:
                    action = RailEnvActions.MOVE_FORWARD
                elif new_direction == (agent_direction + 1) % 4:
                    action = RailEnvActions.MOVE_RIGHT
                elif new_direction == (agent_direction - 1) % 4:
                    action = RailEnvActions.MOVE_LEFT
                else:
                    raise Exception("Illegal state")

                new_position = get_new_position(agent_position, new_direction)
                valid_actions.add(
                    RailEnvNextAction(action, new_position, new_direction))
    return valid_actions
Esempio n. 6
0
    def _explore(self, handle, new_position, new_direction, depth=0):
        has_opp_agent = 0
        has_same_agent = 0
        has_switch = 0
        visited = []

        # stop exploring (max_depth reached)
        if depth >= self.max_depth:
            return has_opp_agent, has_same_agent, has_switch, visited

        # max_explore_steps = 100
        cnt = 0
        while cnt < 100:
            cnt += 1

            visited.append(new_position)
            opp_a = self.env.agent_positions[new_position]
            if opp_a != -1 and opp_a != handle:
                if self.env.agents[opp_a].direction != new_direction:
                    # opp agent found
                    has_opp_agent = 1
                    return has_opp_agent, has_same_agent, has_switch, visited
                else:
                    has_same_agent = 1
                    return has_opp_agent, has_same_agent, has_switch, visited

            # convert one-hot encoding to 0,1,2,3
            agents_on_switch, \
            agents_near_to_switch, \
            agents_near_to_switch_all, \
            agents_on_switch_all = \
                self.check_agent_decision(new_position, new_direction)
            if agents_near_to_switch:
                return has_opp_agent, has_same_agent, has_switch, visited

            possible_transitions = self.env.rail.get_transitions(*new_position, new_direction)
            if agents_on_switch:
                f = 0
                for dir_loop in range(4):
                    if possible_transitions[dir_loop] == 1:
                        f += 1
                        hoa, hsa, hs, v = self._explore(handle,
                                                        get_new_position(new_position, dir_loop),
                                                        dir_loop,
                                                        depth + 1)
                        visited.append(v)
                        has_opp_agent += hoa
                        has_same_agent += hsa
                        has_switch += hs
                f = max(f, 1.0)
                return has_opp_agent / f, has_same_agent / f, has_switch / f, visited
            else:
                new_direction = fast_argmax(possible_transitions)
                new_position = get_new_position(new_position, new_direction)

        return has_opp_agent, has_same_agent, has_switch, visited
Esempio n. 7
0
    def get(self, handle: int = 0):
        self.env: RailEnv = self.env
        agent = self.env.agents[handle]
        if agent.status == RailAgentStatus.READY_TO_DEPART:
            agent_virtual_position = agent.initial_position
        elif agent.status == RailAgentStatus.ACTIVE:
            agent_virtual_position = agent.position
        elif agent.status == RailAgentStatus.DONE:
            agent_virtual_position = agent.target
        else:
            return None

        possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction)
        distance_map = self.env.distance_map.get()
        nan_inf_mask = ((distance_map != np.inf) * (np.abs(np.isnan(distance_map) - 1))).astype(np.bool)
        max_distance = np.max(distance_map[nan_inf_mask])
        assert not np.isnan(max_distance)
        assert max_distance != np.inf
        possible_steps = []

        # look in all directions for possible moves
        for movement in self._directions:
            if possible_transitions[movement]:
                next_move = movement
                pos = get_new_position(agent_virtual_position, movement)
                distance = distance_map[agent.handle][pos + (movement,)]
                distance = max_distance if (
                        distance == np.inf or np.isnan(distance)) else distance

                conflict = self.conflict(handle, pos, movement)
                next_possible_moves = self.env.rail.get_transitions(*pos, movement)
                while np.count_nonzero(next_possible_moves) == 1 and not conflict:
                    movement = np.argmax(next_possible_moves)
                    pos = get_new_position(pos, movement)
                    conflict = self.conflict(handle, pos, movement)
                    next_possible_moves = self.env.rail.get_transitions(*pos, movement)

                if self._encode_one_hot:
                    next_move_one_hot = np.zeros(len(self._directions))
                    next_move_one_hot[next_move] = 1
                    next_move = next_move_one_hot

                possible_steps.append((next_move, [distance / max_distance], [int(conflict)]))

        possible_steps = sorted(possible_steps, key=lambda step: step[1])
        obs = np.full(self._path_size * 2, fill_value=0)
        for i, path in enumerate(possible_steps):
            obs[i * self._path_size:self._path_size * (i + 1)] = np.concatenate([arr for arr in path])

        priority = 0.
        return np.concatenate([obs, [priority, agent.status.value != RailAgentStatus.READY_TO_DEPART]])
Esempio n. 8
0
def TL_detector(env, obs, actions):
    obs_paths = {}
    for idx, agent in enumerate(env.agents):

        if agent.position is None:
            continue
        new_direction, transition_valid = env.check_action(agent, actions[idx])
        new_position = get_new_position(agent.position, new_direction)
        transition_bit = bin(env.rail.get_full_transitions(*new_position))
        total_transitions = transition_bit.count("1")
        if total_transitions == 4:
            agent_obs_path = copy.deepcopy(obs[idx])
            transformer.clip_tree_for_shortest_path(agent_obs_path)
            agent_obs_path = transformer.transform_agent_observation(
                agent_obs_path)
            agent_obs_path = transformer.split_node_list(
                agent_obs_path, env.obs_builder.branches)
            agent_obs_path = transformer.filter_agent_obs(agent_obs_path)
            print("agent")
        else:
            agent_obs_path = None

        obs_paths[idx] = agent_obs_path

    return obs_paths
Esempio n. 9
0
def naive_solver(env, obs):
    actions = {}
    for idx, agent in enumerate(env.agents):
        try:
            possible_transitions = env.rail.get_transitions(
                *agent.position, agent.direction)
        except:
            possible_transitions = env.rail.get_transitions(
                *agent.initial_position, agent.direction)
        num_transitions = np.count_nonzero(possible_transitions)

        if num_transitions == 1:
            actions[idx] = 2
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
                    new_position = get_new_position(agent.position, direction)
                    min_distances.append(
                        env.distance_map.get()[idx, new_position[0],
                                               new_position[1], direction])
                else:
                    min_distances.append(np.inf)

            actions[idx] = np.argmin(min_distances) + 1

    return actions
Esempio n. 10
0
def find_alternative(env, possible_transitions, agent_pos, agent_dir,
                     prediction):
    # Approccio naive - se non mi trovo su un fork mi blocco
    # altrimenti si potrebbe far ricalcolare uno shortestpath che non consideri il binario su cui si trova il treno che confligge

    possible_directions = []
    neighbours = []
    for j, branch_direction in enumerate([(agent_dir + j) % 4
                                          for j in range(-1, 3)]):
        if possible_transitions[branch_direction]:
            possible_directions.append(branch_direction)
    for direction in possible_directions:
        neighbour_cell = get_new_position(agent_pos, direction)
        new_direction = get_direction(pos1=agent_pos, pos2=neighbour_cell)
        neighbours.append((neighbour_cell, new_direction))
    # Compute all possible moves except the ones of the shortest path
    next_cell = (prediction[0][0], prediction[0][1])
    neighbours = [n for n in neighbours if next_cell not in n]

    actions = [
        get_action_for_move(agent_pos, agent_dir, n[0], n[1], env.rail)
        for n in neighbours
    ]

    return actions
Esempio n. 11
0
    def get(self, handle: int = 0):
        self.env: RailEnv = self.env
        agent = self.env.agents[handle]
        if agent.status == RailAgentStatus.READY_TO_DEPART:
            agent_virtual_position = agent.initial_position
        elif agent.status == RailAgentStatus.ACTIVE:
            agent_virtual_position = agent.position
        elif agent.status == RailAgentStatus.DONE:
            agent_virtual_position = agent.target
        else:
            return None

        possible_transitions = self.env.rail.get_transitions(
            *agent_virtual_position, agent.direction)
        distance_map = self.env.distance_map.get()
        nan_inf_mask = ((distance_map != np.inf) *
                        (np.abs(np.isnan(distance_map) - 1))).astype(np.bool)
        max_distance = np.max(distance_map[nan_inf_mask])
        assert not np.isnan(max_distance)
        assert max_distance != np.inf
        possible_steps = []

        # look in all directions for possible moves
        for movement in self._directions:
            if possible_transitions[movement]:
                next_move = movement
                pos = get_new_position(agent_virtual_position, movement)
                distance = distance_map[agent.handle][pos + (movement, )]
                distance = max_distance if (
                    distance == np.inf or np.isnan(distance)) else distance

                cell_transitions = self.env.rail.get_transitions(
                    *pos, movement)
                _, ch = self.detect_conflicts(
                    1, np.reciprocal(agent.speed_data["speed"]), pos,
                    cell_transitions, handle, movement)

                conflict = ch is not None

                if conflict and len(possible_steps) == 0:
                    self._shortest_path_conflict_map[handle].append(ch)
                elif conflict:
                    self._other_path_conflict_map[handle].append(ch)

                if self._encode_one_hot:
                    next_move_one_hot = np.zeros(len(self._directions))
                    next_move_one_hot[next_move] = 1
                    next_move = next_move_one_hot

                possible_steps.append(
                    (next_move, [distance / max_distance], [int(conflict)],
                     [int(not conflict)]))  # priority field

        possible_steps = sorted(possible_steps, key=lambda step: step[1])
        obs = np.full(self._path_size * 2, fill_value=0)
        for i, path in enumerate(possible_steps):
            obs[i * self._path_size:self._path_size *
                (i + 1)] = np.concatenate([arr for arr in path])

        return obs, int(agent.status.value != RailAgentStatus.READY_TO_DEPART)
    def find_safe_edges(self, env):
        for idx, agent in enumerate(env.agents):

            current_pos = agent.position
            current_dir = agent.direction
            if current_pos is None:
                current_pos = agent.initial_position

            self.add_to_safe_map(current_pos, current_dir)
            while not current_pos == agent.target:

                possible_transitions = env.rail.get_transitions(
                    *current_pos, current_dir)
                min_distances = []
                min_distance = None

                for direction in [(current_dir + i) % 4 for i in range(-1, 2)]:

                    if possible_transitions[direction]:
                        new_position = get_new_position(current_pos, direction)
                        min_distances.append(
                            env.distance_map.get()[idx, new_position[0],
                                                   new_position[1], direction])
                        if min_distance is None or min_distance > min_distances[
                                -1]:
                            min_distance = min_distances[-1]
                            next_pos = new_position
                    else:
                        min_distances.append(np.inf)

                current_dir = find_new_direction(current_dir,
                                                 np.argmin(min_distances) + 1)
                current_pos = next_pos
                self.add_to_safe_map(current_pos, current_dir)
Esempio n. 13
0
    def get_shortest_path_position(self, position, direction, handle):
        distance_map = self.env.distance_map.get()
        nan_inf_mask = ((distance_map != np.inf) *
                        (np.abs(np.isnan(distance_map) - 1))).astype(np.bool)
        max_dist = np.max(self.env.distance_map.get()[nan_inf_mask])

        possible_transitions = self.env.rail.get_transitions(
            *position, direction)
        min_dist = np.inf
        sp_move = None
        sp_pos = None

        for movement in self._directions:
            if possible_transitions[movement]:
                pos = get_new_position(position, movement)
                distance = self.env.distance_map.get()[handle][pos +
                                                               (movement, )]
                distance = max_dist if (distance == np.inf
                                        or np.isnan(distance)) else distance
                if distance <= min_dist:
                    min_dist = distance
                    sp_move = movement
                    sp_pos = pos

        return sp_pos, sp_move
Esempio n. 14
0
    def find_all_cell_where_agent_can_choose(self):
        switches = {}
        for h in range(self.env.height):
            for w in range(self.env.width):
                pos = (h, w)
                for dir in range(4):
                    possible_transitions = self.env.rail.get_transitions(*pos, dir)
                    num_transitions = fast_count_nonzero(possible_transitions)
                    if num_transitions > 1:
                        if pos not in switches.keys():
                            switches.update({pos: [dir]})
                        else:
                            switches[pos].append(dir)

        switches_neighbours = {}
        for h in range(self.env.height):
            for w in range(self.env.width):
                # look one step forward
                for dir in range(4):
                    pos = (h, w)
                    possible_transitions = self.env.rail.get_transitions(*pos, dir)
                    for d in range(4):
                        if possible_transitions[d] == 1:
                            new_cell = get_new_position(pos, d)
                            if new_cell in switches.keys() and pos not in switches.keys():
                                if pos not in switches_neighbours.keys():
                                    switches_neighbours.update({pos: [dir]})
                                else:
                                    switches_neighbours[pos].append(dir)

        self.switches = switches
        self.switches_neighbours = switches_neighbours
Esempio n. 15
0
def find_decision_cells(env):
    """

    :param env: The RailEnv to inspect
    :return: A set containing decision cells, made by switches and their neighbors
    """

    switches = []
    switches_neighbors = []
    directions = list(range(4))
    for h in range(env.height):
        for w in range(env.width):
            pos = (h, w)
            is_switch = False
            # Check for switch counting the outgoing transition
            for orientation in directions:
                possible_transitions = env.rail.get_transitions(*pos, orientation)
                num_transitions = np.count_nonzero(possible_transitions)
                if num_transitions > 1:
                    switches.append(pos)
                    is_switch = True
                    break
            if is_switch:
                # Add all neighbouring rails, if pos is a switch
                for orientation in directions:
                    possible_transitions = env.rail.get_transitions(*pos, orientation)
                    for movement in directions:
                        if possible_transitions[movement]:
                            switches_neighbors.append(get_new_position(pos, movement))

    return set(switches).union(set(switches_neighbors))
Esempio n. 16
0
    def _find_all_decision_cells(self):
        switches = []
        switches_neighbors = []
        directions = list(range(4))
        for h in range(self.unwrapped.rail_env.height):
            for w in range(self.unwrapped.rail_env.width):
                pos = (h, w)
                is_switch = False
                # Check for switch: if there is more than one outgoing transition
                for orientation in directions:
                    possible_transitions = self.unwrapped.rail_env.rail.get_transitions(
                        *pos, orientation)
                    num_transitions = np.count_nonzero(possible_transitions)
                    if num_transitions > 1:
                        switches.append(pos)
                        is_switch = True
                        break
                if is_switch:
                    # Add all neighbouring rails, if pos is a switch
                    for orientation in directions:
                        possible_transitions = self.unwrapped.rail_env.rail.get_transitions(
                            *pos, orientation)
                        for movement in directions:
                            if possible_transitions[movement]:
                                switches_neighbors.append(
                                    get_new_position(pos, movement))

        decision_cells = switches + switches_neighbors
        return tuple(map(set, (switches, switches_neighbors, decision_cells)))
    def check_path_exists(self, start: IntVector2DArray, direction: int,
                          end: IntVector2DArray):
        """
        Breath first search for a possible path from one node with a certain orientation to a target node.
        :param start: Start cell rom where we want to check the path
        :param direction: Start direction for the path we are testing
        :param end: Cell that we try to reach from the start cell
        :return: True if a path exists, False otherwise
        """
        visited = OrderedSet()
        stack = [(start, direction)]
        while stack:
            node = stack.pop()
            node_position = node[0]
            node_direction = node[1]

            if Vec2d.is_equal(node_position, end):
                return True
            if node not in visited:
                visited.add(node)

                moves = self.get_transitions(node_position[0],
                                             node_position[1], node_direction)
                for move_index in range(4):
                    if moves[move_index]:
                        stack.append(
                            (get_new_position(node_position,
                                              move_index), move_index))

        return False
Esempio n. 18
0
    def get(self, handle: int = 0) -> List[int]:
        agent = self.env.agents[handle]

        if agent.status == RailAgentStatus.READY_TO_DEPART:
            agent_virtual_position = agent.initial_position
        elif agent.status == RailAgentStatus.ACTIVE:
            agent_virtual_position = agent.position
        elif agent.status == RailAgentStatus.DONE:
            agent_virtual_position = agent.target
        else:
            return None

        possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction)
        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
                    new_position = get_new_position(agent_virtual_position, direction)
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
            observation[np.argmin(min_distances)] = 1

        return observation
Esempio n. 19
0
    def get(self, handle: int = 0):
        self.env: RailEnv = self.env
        agent = self.env.agents[handle]
        if agent.status == RailAgentStatus.READY_TO_DEPART:
            agent_virtual_position = agent.initial_position
        elif agent.status == RailAgentStatus.ACTIVE:
            agent_virtual_position = agent.position
        elif agent.status == RailAgentStatus.DONE:
            agent_virtual_position = agent.target
        else:
            return None

        possible_transitions = self.env.rail.get_transitions(
            *agent_virtual_position, agent.direction)
        distance_map = self.env.distance_map.get()
        nan_inf_mask = ((distance_map != np.inf) *
                        (np.abs(np.isnan(distance_map) - 1))).astype(np.bool)
        max_distance = np.max(distance_map[nan_inf_mask])
        possible_paths = []

        for movement in self._directions:
            if possible_transitions[movement]:
                pos = get_new_position(agent_virtual_position, movement)
                distance = distance_map[agent.handle][pos + (movement, )]
                distance = max_distance if (
                    distance == np.inf or np.isnan(distance)) else distance

                if handle in self._relevant_handles and np.count_nonzero(possible_transitions) > 1 \
                        and agent.status != RailAgentStatus.READY_TO_DEPART:
                    conflict, malf = self.conflict_detector.detect_conflicts_multi(
                        position=pos,
                        direction=movement,
                        handles=self._relevant_handles,
                        break_after_first=False,
                        agent=self.env.agents[handle])
                    malf = np.max(malf) if len(malf) > 0 else 0
                else:
                    conflict = []
                    malf = 0
                possible_paths.append(
                    np.array([
                        distance /
                        max_distance,  # normalized distance to target
                        malf / self.env.malfunction_process_data.max_duration,
                        len(set(conflict)) / self.env.get_num_agents(),
                        int(len(conflict) > 0)
                    ]))

        possible_steps = sorted(possible_paths, key=lambda path: path[1])
        obs = np.full(self.path_size * 2, fill_value=0, dtype=np.float32)
        for i, path in enumerate(possible_steps):
            obs[i * self.path_size:self.path_size * (i + 1)] = path

        return obs
    def explore_branch(self, node, position, direction):
        original_direction = direction
        edge_positions = {}
        distance = 1

        # Explore until we find a junction
        while not self.is_junction(position) and not self.is_target(position):
            next_direction = first(
                self.get_possible_transitions(position, direction))
            edge_positions[(*position, direction)] = (distance, next_direction)
            position = get_new_position(position, next_direction)
            direction = next_direction
            distance += 1

        # Create any nodes that aren't in the graph yet
        transitions = self.get_all_transitions(position)
        nodes = {
            t: RailNode(position, t, self.is_target(position))
            for d, t in enumerate(transitions)
            if t and (*position, d) not in self.graph
        }

        for d, t in enumerate(transitions):
            if t in nodes:
                self.graph[(*position, d)] = nodes[t]

        # Connect the previous node to the next one, and update self.edge_positions
        next_node = self.graph[(*position, direction)]
        node.edges[original_direction] = (next_node, distance)
        for key, (distance, next_direction) in edge_positions.items():
            self.edge_positions[key].append(
                (node, next_node, original_direction, distance))
            self.edge_paths[node.position, original_direction].append(
                (*key, next_direction))

        # Call ourselves recursively since we're exploring depth-first
        for transitions, node in nodes.items():
            for direction in transitions:
                self.explore_branch(node,
                                    get_new_position(position,
                                                     direction), direction)
Esempio n. 21
0
def _step_along_shortest_path(env, obs_builder, rail):
    actions = {}
    expected_next_position = {}
    for agent in env.agents:
        agent: EnvAgent
        shortest_distance = np.inf

        for exit_direction in range(4):
            neighbour = get_new_position(agent.position, exit_direction)

            if neighbour[0] >= 0 and neighbour[0] < env.height and neighbour[
                    1] >= 0 and neighbour[1] < env.width:
                desired_movement_from_new_cell = (exit_direction + 2) % 4

                # Check all possible transitions in new_cell
                for agent_orientation in range(4):
                    # Is a transition along movement `entry_direction` to the neighbour possible?
                    is_valid = obs_builder.env.rail.get_transition(
                        (neighbour[0], neighbour[1], agent_orientation),
                        desired_movement_from_new_cell)
                    if is_valid:
                        distance_to_target = obs_builder.env.distance_map.get(
                        )[(agent.handle, *agent.position, exit_direction)]
                        print("agent {} at {} facing {} taking {} distance {}".
                              format(agent.handle, agent.position,
                                     agent.direction, exit_direction,
                                     distance_to_target))

                        if distance_to_target < shortest_distance:
                            shortest_distance = distance_to_target
                            actions_to_be_taken_when_facing_north = {
                                Grid4TransitionsEnum.NORTH:
                                RailEnvActions.MOVE_FORWARD,
                                Grid4TransitionsEnum.EAST:
                                RailEnvActions.MOVE_RIGHT,
                                Grid4TransitionsEnum.WEST:
                                RailEnvActions.MOVE_LEFT,
                                Grid4TransitionsEnum.SOUTH:
                                RailEnvActions.DO_NOTHING,
                            }
                            print("   improved (direction) -> {}".format(
                                exit_direction))

                            actions[
                                agent.
                                handle] = actions_to_be_taken_when_facing_north[
                                    (exit_direction - agent.direction) %
                                    len(rail.transitions.get_direction_enum())]
                            expected_next_position[agent.handle] = neighbour
                            print("   improved (action) -> {}".format(
                                actions[agent.handle]))
    _, rewards, dones, _ = env.step(actions)
    return rewards
    def _get_and_update_neighbors(self,
                                  rail: GridTransitionMap,
                                  position,
                                  target_nr,
                                  current_distance,
                                  enforce_target_direction=-1):
        """
        Utility function used by _distance_map_walker to perform a BFS walk over the rail, filling in the
        minimum distances from each target cell.
        """
        neighbors = []

        possible_directions = [0, 1, 2, 3]
        if enforce_target_direction >= 0:
            # The agent must land into the current cell with orientation `enforce_target_direction'.
            # This is only possible if the agent has arrived from the cell in the opposite direction!
            possible_directions = [(enforce_target_direction + 2) % 4]

        for neigh_direction in possible_directions:
            new_cell = get_new_position(position, neigh_direction)

            if new_cell[0] >= 0 and new_cell[0] < self.env_height and new_cell[
                    1] >= 0 and new_cell[1] < self.env_width:

                desired_movement_from_new_cell = (neigh_direction + 2) % 4

                # Check all possible transitions in new_cell
                for agent_orientation in range(4):
                    # Is a transition along movement `desired_movement_from_new_cell' to the current cell possible?
                    is_valid = rail.get_transition(
                        (new_cell[0], new_cell[1], agent_orientation),
                        desired_movement_from_new_cell)

                    if is_valid:
                        """
                        # TODO: check that it works with deadends! -- still bugged!
                        movement = desired_movement_from_new_cell
                        if isNextCellDeadEnd:
                            movement = (desired_movement_from_new_cell+2) % 4
                        """
                        new_distance = min(
                            self.distance_map[target_nr, new_cell[0],
                                              new_cell[1], agent_orientation],
                            current_distance + 1)
                        neighbors.append((new_cell[0], new_cell[1],
                                          agent_orientation, new_distance))
                        self.distance_map[target_nr, new_cell[0], new_cell[1],
                                          agent_orientation] = new_distance

        return neighbors
Esempio n. 23
0
    def _check_action_on_agent(self, action: RailEnvActions, agent: EnvAgent):
        """

        Parameters
        ----------
        action : RailEnvActions
        agent : EnvAgent

        Returns
        -------
        bool
            Is it a legal move?
            1) transition allows the new_direction in the cell,
            2) the new cell is not empty (case 0),
            3) the cell is free, i.e., no agent is currently in that cell


        """
        # compute number of possible transitions in the current
        # cell used to check for invalid actions
        new_direction, transition_valid = self.check_action(agent, action)
        new_position = get_new_position(agent.position, new_direction)

        new_cell_valid = (
            np.array_equal(  # Check the new position is still in the grid
                new_position,
                np.clip(new_position, [0, 0], [self.height - 1, self.width - 1]))
            and  # check the new position has some transitions (ie is not an empty cell)
            self.rail.get_full_transitions(*new_position) > 0)

        # If transition validity hasn't been checked yet.
        if transition_valid is None:
            transition_valid = self.rail.get_transition(
                (*agent.position, agent.direction),
                new_direction)

        # only call cell_free() if new cell is inside the scene
        if new_cell_valid:
            # Check the new position is not the same as any of the existing agent positions
            # (including itself, for simplicity, since it is moving)
            cell_free = self.cell_free(new_position) if not self.remove_collisions else True

        else:
            # if new cell is outside of scene -> cell_free is False
            cell_free = False
        return cell_free, new_cell_valid, new_direction, new_position, transition_valid
Esempio n. 24
0
    def get_deadlocks(self, agent: EnvAgent, seen: List[int]) -> EnvAgent:
        # abort if agent already checked
        if agent.handle in seen:
            # handle circular deadlock
            seen.append(agent.handle)
            # return
            return []
        # add agent to seen agents
        seen.append(agent.handle)

        # get rail environment
        rail_env: RailEnv = self.unwrapped.rail_env
        # get transitions for agent's position and direction
        transitions = rail_env.rail.get_transitions(*agent.position,
                                                    agent.direction)
        num_possible_transitions = np.count_nonzero(transitions)
        # initialize list to assign deadlocked agents to directions
        deadlocked_agents = [None] * len(transitions)
        # check if all possible transitions are blocked
        for direction, transition in enumerate(transitions):
            # only check transitions > 0 but iterate through all to get direction
            if transition > 0:
                # get opposite agent in direction of travel if cell is occuppied
                new_position = get_new_position(agent.position, direction)
                i_opp_agent = rail_env.agent_positions[new_position]
                if i_opp_agent != -1:
                    opp_agent = rail_env.agents[i_opp_agent]
                    # get blocking agents of opposite agent
                    blocking_agents = self.get_deadlocks(opp_agent, seen)
                    # add opposite agent to deadlocked agents if blocked by
                    # checking agent. also add opposite agent if it is part
                    # of a circular blocking structure.
                    if agent in blocking_agents or seen[0] == seen[-1]:
                        deadlocked_agents[direction] = opp_agent

        # return deadlocked agents if applicable
        num_deadlocked_agents = np.count_nonzero(deadlocked_agents)
        if num_deadlocked_agents > 0:
            # deadlock has to be resolved only if no transition is possible
            if num_deadlocked_agents == num_possible_transitions:
                return deadlocked_agents
            # workaround for already commited agent inside cell that is blocked by at least one agent
            if agent.speed_data['position_fraction'] > 1:
                return deadlocked_agents

        return []
Esempio n. 25
0
 def _check_feasible_transitions(self, pos, env):
     '''
     Function used to collect chains of blocked agents
     '''
     transitions = env.rail.get_transitions(*pos)
     n_transitions = 0
     occupied = 0
     agent_in_path = None
     for direction, values in enumerate(MOVEMENT_ARRAY):
         if transitions[direction] == 1:
             n_transitions += 1
             new_position = get_new_position(pos, direction)
             for agent in range(env.get_num_agents()):
                 if env.agents[agent].position == new_position:
                     occupied += 1
                     agent_in_path = agent
     if n_transitions > occupied:
         return None
     return agent_in_path
Esempio n. 26
0
def get_shortest_path_action(env,handle):
    distance_map = env.distance_map.get()

    agent = env.agents[handle]

    if agent.status == RailAgentStatus.READY_TO_DEPART:
        agent_virtual_position = agent.initial_position
    elif agent.status == RailAgentStatus.ACTIVE:
        agent_virtual_position = agent.position
    elif agent.status == RailAgentStatus.DONE:
        agent_virtual_position = agent.target
    else:
        return None

    if agent.position:
        possible_transitions = env.rail.get_transitions(
            *agent.position, agent.direction)
    else:
        possible_transitions = env.rail.get_transitions(
            *agent.initial_position, agent.direction)

    num_transitions = np.count_nonzero(possible_transitions)                    
    
    min_distances = []
    for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
        if possible_transitions[direction]:
            new_position = get_new_position(
                agent_virtual_position, direction)
            min_distances.append(
                distance_map[handle, new_position[0],
                            new_position[1], direction])
        else:
            min_distances.append(np.inf)

    if num_transitions == 1:
        observation = [0, 1, 0]

    elif num_transitions == 2:
        idx = np.argpartition(np.array(min_distances), 2)
        observation = [0, 0, 0]
        observation[idx[0]] = 1
    return np.argmax(observation) + 1
Esempio n. 27
0
 def check_deadlock(self):  #  -> Set[int]:
     rail_env: RailEnv = self.unwrapped.rail_env
     new_deadlocked_agents = []
     for agent in rail_env.agents:
         if agent.status == RailAgentStatus.ACTIVE and agent.handle not in self._deadlocked_agents:
             position = agent.position
             direction = agent.direction
             while position is not None:
                 possible_transitions = rail_env.rail.get_transitions(
                     *position, direction)
                 num_transitions = np.count_nonzero(possible_transitions)
                 if num_transitions == 1:
                     new_direction_me = np.argmax(possible_transitions)
                     new_cell_me = get_new_position(position,
                                                    new_direction_me)
                     opp_agent = rail_env.agent_positions[new_cell_me]
                     if opp_agent != -1:
                         opp_position = rail_env.agents[opp_agent].position
                         opp_direction = rail_env.agents[
                             opp_agent].direction
                         opp_possible_transitions = rail_env.rail.get_transitions(
                             *opp_position, opp_direction)
                         opp_num_transitions = np.count_nonzero(
                             opp_possible_transitions)
                         if opp_num_transitions == 1:
                             if opp_direction != direction:
                                 self._deadlocked_agents.append(
                                     agent.handle)
                                 new_deadlocked_agents.append(agent.handle)
                                 position = None
                             else:
                                 position = new_cell_me
                                 direction = new_direction_me
                         else:
                             position = new_cell_me
                             direction = new_direction_me
                     else:
                         position = None
                 else:
                     position = None
     return new_deadlocked_agents
def check_if_all_blocked(env):
    """
    Checks whether all the agents are blocked (full deadlock situation).
    In that case it is pointless to keep running inference as no agent will be able to move.
    :param env: current environment
    :return:
    """

    # First build a map of agents in each position
    location_has_agent = {}
    for agent in env.agents:
        if agent.status in [RailAgentStatus.ACTIVE, RailAgentStatus.DONE
                            ] and agent.position:
            location_has_agent[tuple(agent.position)] = 1

    # Looks for any agent that can still move
    for handle in env.get_agent_handles():
        agent = env.agents[handle]
        if agent.status == RailAgentStatus.READY_TO_DEPART:
            agent_virtual_position = agent.initial_position
        elif agent.status == RailAgentStatus.ACTIVE:
            agent_virtual_position = agent.position
        elif agent.status == RailAgentStatus.DONE:
            agent_virtual_position = agent.target
        else:
            continue

        possible_transitions = env.rail.get_transitions(
            *agent_virtual_position, agent.direction)
        orientation = agent.direction

        for branch_direction in [(orientation + i) % 4 for i in range(-1, 3)]:
            if possible_transitions[branch_direction]:
                new_position = get_new_position(agent_virtual_position,
                                                branch_direction)

                if new_position not in location_has_agent:
                    return False

    # No agent can move at all: full deadlock!
    return True
    def _generate_edges(self):
        '''
        Translate the environment grid to the unpacked cell orientation graph
        '''
        edges = []
        for i, row in enumerate(self.grid):
            for j, _ in enumerate(row):
                if self.grid[i][j] != 0:
                    trans_int = self.grid[i][j]
                    trans_bitmap = format(trans_int, 'b').rjust(16, '0')
                    num_ones = trans_bitmap.count('1')
                    if num_ones == 2:
                        self._straight_rails.add((i, j))
                    elif num_ones == 1:
                        self._dead_ends.add((i, j))
                    tmp_edges, tmp_actions = [], dict()
                    for k, bit in enumerate(trans_bitmap):
                        if bit == '1':
                            original_dir, final_dir = self._BITMAP_TO_TRANS[k]
                            new_position_x, new_position_y = get_new_position(
                                [i, j], final_dir.value)
                            tmp_action = env_utils.agent_action(
                                original_dir, final_dir)
                            tmp_edges.append(((i, j, original_dir.value),
                                              (new_position_x, new_position_y,
                                               final_dir.value), tmp_action))
                            tmp_actions.setdefault(
                                (i, j, original_dir.value),
                                np.full((env_utils.get_num_actions(), ),
                                        False))[tmp_action.value] = True

                    for tmp_edge in tmp_edges:
                        tmp_choice = self.map_action_to_choice(
                            tmp_edge[2], tmp_actions[tmp_edge[0]])
                        edge = (tmp_edge[0], tmp_edge[1], {
                            'weight': 1,
                            'action': tmp_edge[2],
                            'choice': tmp_choice
                        })
                        edges.append(edge)
        return edges
Esempio n. 30
0
    def check_agent_decision(self, position, direction):
        switches = self.switches
        switches_neighbours = self.switches_neighbours
        agents_on_switch = False
        agents_on_switch_all = False
        agents_near_to_switch = False
        agents_near_to_switch_all = False
        if position in switches.keys():
            agents_on_switch = direction in switches[position]
            agents_on_switch_all = True

        if position in switches_neighbours.keys():
            new_cell = get_new_position(position, direction)
            if new_cell in switches.keys():
                if not direction in switches[new_cell]:
                    agents_near_to_switch = direction in switches_neighbours[position]
            else:
                agents_near_to_switch = direction in switches_neighbours[position]

            agents_near_to_switch_all = direction in switches_neighbours[position]

        return agents_on_switch, agents_near_to_switch, agents_near_to_switch_all, agents_on_switch_all