def cifar_cnn_concat(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 #x_train *= 0 #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32') y_train = y_train.astype('int32') print("shape: ", x_train.shape) input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") ot1 = cifar_cnn_sub(input_tensor1, 1) ot2 = cifar_cnn_sub(input_tensor2, 2) ot3 = cifar_cnn_sub(input_tensor2, 3) output_tensor = Concatenate(axis=1)([ot1, ot2, ot3]) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) o1 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu", name="conv2d_0_4")(output_tensor) o2 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu", name="conv2d_1_4")(output_tensor) output_tensor = Concatenate(axis=1)([o1, o2]) output_tensor = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = Dense(512, activation="relu")(output_tensor) output_tensor = Dense(num_classes)(output_tensor) output_tensor = Activation("softmax")(output_tensor) model = Model([input_tensor1, input_tensor2], output_tensor) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit([x_train, x_train], y_train, epochs=1)
def top_level_task(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') print("shape: ", x_train.shape) input_tensor1 = Input(shape=(3, 32, 32), dtype="float32", name="input1") input_tensor2 = Input(shape=(3, 32, 32), dtype="float32", name="input2") ot1 = cifar_cnn_sub(input_tensor1, 1) model1 = Model(input_tensor1, ot1) print(model1.summary()) ot2 = cifar_cnn_sub(input_tensor2, 2) model2 = Model(input_tensor2, ot2) print(model2.summary()) output_tensor = Concatenate(axis=1)([model1.output, model2.output]) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu", name="conv2d_0_4")(output_tensor) output_tensor = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = Dense(512, activation="relu")(output_tensor) output_tensor = Dense(num_classes)(output_tensor) output_tensor = Activation("softmax")(output_tensor) model = Model([input_tensor1, input_tensor2], output_tensor) # print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit([x_train, x_train], y_train, epochs=160, callbacks=[ VerifyMetrics(ModelAccuracy.CIFAR10_CNN), EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN) ])
def top_level_task(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print("shape: ", x_train.shape) # input_tensor1 = Input(shape=(256,)) input_tensor11 = Input(shape=(256,)) input_tensor12 = Input(shape=(256,)) input_tensor2 = Input(shape=(256,)) input_tensor3 = Input(shape=(256,)) input_tensor4 = Input(shape=(256,)) # t1 = Dense(512, activation="relu", name="dense1")(input_tensor1) # t1 = Dense(512, activation="relu", name="dense12")(t1) # model1 = Model(input_tensor1, t1) t11 = Dense(512, activation="relu", name="dense1")(input_tensor11) model11 = Model(input_tensor11, t11) t12 = model11(input_tensor12) t1 = Dense(512, activation="relu", name="dense12")(t12) model1 = Model(input_tensor12, t1) t2 = Dense(512, activation="relu", name="dense2")(input_tensor2) t2 = Dense(512, activation="relu", name="dense22")(t2) model2 = Model(input_tensor2, t2) t3 = Dense(512, activation="relu", name="dense3")(input_tensor3) t3 = Dense(512, activation="relu", name="dense33")(t3) model3 = Model(input_tensor3, t3) t4 = Dense(512, activation="relu", name="dense4")(input_tensor4) t4 = Dense(512, activation="relu", name="dense44")(t4) model4 = Model(input_tensor4, t4) input_tensor = Input(shape=(784,)) t00 = Input(shape=(784,), name="input_00") t01 = Input(shape=(784,), name="input_01") t1 = model1(input_tensor) t2 = model2(input_tensor) t3 = model3(input_tensor) t4 = model4(input_tensor) output = Concatenate(axis=1)([t00, t01, t1, t2, t3, t4]) output = Dense(num_classes)(output) output = Activation("softmax")(output) model = Model([t00, t01, input_tensor], output) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit([x_train, x_train, x_train], y_train, epochs=10, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)])
def build_model(loader, args, permanent_dropout=True, silent=False): input_shapes = {} dropout_rate = args.dropout for fea_type, shape in loader.feature_shapes.items(): base_type = fea_type.split('.')[0] if base_type in ['cell', 'drug']: if not silent: print('Feature encoding submodel for %s:', fea_type) #box.summary(print_fn=logger.debug) input_shapes[fea_type] = shape inputs = [] encoded_inputs = [] for fea_name, fea_type in loader.input_features.items(): shape = loader.feature_shapes[fea_type] fea_input = Input(shape, name='input.' + fea_name) inputs.append(fea_input) if fea_type in input_shapes: if args.dense_cell_feature_layers is not None and base_type == 'cell': dense_feature_layers = args.dense_cell_feature_layers elif args.dense_drug_feature_layers is not None and base_type == 'drug': dense_feature_layers = args.dense_drug_feature_layers else: dense_feature_layers = args.dense_feature_layers input_model = build_feature_model( input_shape=shape, name=fea_type, dense_layers=dense_feature_layers, dropout_rate=dropout_rate, permanent_dropout=permanent_dropout) encoded = input_model(fea_input) else: encoded = fea_input encoded_inputs.append(encoded) merged = Concatenate(axis=1)(encoded_inputs) h = merged for i, layer in enumerate(args.dense): x = h h = Dense(layer, activation=args.activation)(h) if dropout_rate > 0: if permanent_dropout: h = PermanentDropout(dropout_rate)(h) else: h = Dropout(dropout_rate)(h) if args.residual: try: h = Add([h, x]) except ValueError: pass output = Dense(1)(h) return Model(inputs, output)
def cnn_concat(): num_classes = 10 img_rows, img_cols = 28, 28 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) input_tensor = Input(batch_shape=[0, 1, 28, 28], dtype="float32") t1 = Conv2D(filters=32, input_shape=(1, 28, 28), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(input_tensor) t2 = Conv2D(filters=32, input_shape=(1, 28, 28), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(input_tensor) output = Concatenate(axis=1)([t1, t2]) output = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output) output = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output) output = Flatten()(output) output = Dense(128, activation="relu")(output) output = Dense(num_classes)(output) output = Activation("softmax")(output) model = Model(input_tensor, output) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def mlp_concat(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32') print("shape: ", x_train.shape) input_tensor = Input(batch_shape=[0, 784], dtype="float32") t1 = Dense(512, input_shape=(784, ), activation="relu", name="dense1")(input_tensor) t2 = Dense(512, input_shape=(784, ), activation="relu", name="dense2")(input_tensor) t3 = Dense(512, input_shape=(784, ), activation="relu", name="dense3")(input_tensor) t4 = Dense(512, input_shape=(784, ), activation="relu", name="dense4")(input_tensor) output = Concatenate(axis=1)([t1, t2, t3, t4]) output2 = Dense(512, activation="relu")(output) output3 = Dense(num_classes)(output2) output4 = Activation("softmax")(output3) model = Model(input_tensor, output4) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def top_level_task(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') print("shape: ", x_train.shape) #teacher input_tensor1 = Input(shape=(3, 32, 32), dtype="float32") c1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding="same", activation="relu") c2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") d1 = Dense(512, activation="relu") d2 = Dense(num_classes) output_tensor = c1(input_tensor1) output_tensor = c2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")(output_tensor) output_tensor = c3(output_tensor) output_tensor = c4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = d1(output_tensor) output_tensor = d2(output_tensor) output_tensor = Activation("softmax")(output_tensor) teacher_model = Model(input_tensor1, output_tensor) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) teacher_model.compile( optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) teacher_model.fit(x_train, y_train, epochs=10) c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel) c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel) c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel) c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel) d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel) d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel) #d2_kernel *= 0 c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1) print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape) #student model input_tensor2 = Input(shape=(3, 32, 32), dtype="float32") sc1_1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding="same", activation="relu") sc1_2 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding="same", activation="relu") sc2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sd1 = Dense(512, activation="relu") sd2 = Dense(num_classes) t1 = sc1_1(input_tensor2) t2 = sc1_2(input_tensor2) output_tensor = Concatenate(axis=1)([t1, t2]) output_tensor = sc2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")(output_tensor) output_tensor = sc3(output_tensor) output_tensor = sc4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = sd1(output_tensor) output_tensor = sd2(output_tensor) output_tensor = Activation("softmax")(output_tensor) student_model = Model(input_tensor2, output_tensor) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) student_model.compile( optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias) sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias) sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias) sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias) sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias) student_model.fit(x_train, y_train, epochs=160, callbacks=[ VerifyMetrics(ModelAccuracy.CIFAR10_CNN), EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN) ])
def cifar_cnn_net2net(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 #x_train *= 0 #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32') y_train = y_train.astype('int32') print("shape: ", x_train.shape) #teacher input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") c1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") d1 = Dense(512, activation="relu") d2 = Dense(num_classes) output_tensor = c1(input_tensor1) output_tensor = c2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = c3(output_tensor) output_tensor = c4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = d1(output_tensor) output_tensor = d2(output_tensor) output_tensor = Activation("softmax")(output_tensor) teacher_model = Model(input_tensor1, output_tensor) print(teacher_model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) teacher_model.compile(optimizer=opt) teacher_model.fit(x_train, y_train, epochs=1) c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel) c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel) c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel) c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel) d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel) d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel) #d2_kernel *= 0 c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1) print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape) #student model input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") sc1_1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc1_2 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sd1 = Dense(512, activation="relu") sd2 = Dense(num_classes) t1 = sc1_1(input_tensor2) t2 = sc1_2(input_tensor2) output_tensor = Concatenate(axis=1)([t1, t2]) output_tensor = sc2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = sc3(output_tensor) output_tensor = sc4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = sd1(output_tensor) output_tensor = sd2(output_tensor) output_tensor = Activation("softmax")(output_tensor) student_model = Model(input_tensor2, output_tensor) print(student_model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) student_model.compile(optimizer=opt) sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias) sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias) sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias) sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias) sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias) student_model.fit(x_train, y_train, epochs=1)