Esempio n. 1
0
def cifar_cnn_concat():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    #x_train *= 0
    #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32')
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")
    input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    ot1 = cifar_cnn_sub(input_tensor1, 1)
    ot2 = cifar_cnn_sub(input_tensor2, 2)
    ot3 = cifar_cnn_sub(input_tensor2, 3)
    output_tensor = Concatenate(axis=1)([ot1, ot2, ot3])
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    o1 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu",
                name="conv2d_0_4")(output_tensor)
    o2 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu",
                name="conv2d_1_4")(output_tensor)
    output_tensor = Concatenate(axis=1)([o1, o2])
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu")(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = Dense(512, activation="relu")(output_tensor)
    output_tensor = Dense(num_classes)(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    model = Model([input_tensor1, input_tensor2], output_tensor)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit([x_train, x_train], y_train, epochs=1)
def top_level_task():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    input_tensor1 = Input(shape=(3, 32, 32), dtype="float32", name="input1")
    input_tensor2 = Input(shape=(3, 32, 32), dtype="float32", name="input2")

    ot1 = cifar_cnn_sub(input_tensor1, 1)
    model1 = Model(input_tensor1, ot1)
    print(model1.summary())
    ot2 = cifar_cnn_sub(input_tensor2, 2)
    model2 = Model(input_tensor2, ot2)
    print(model2.summary())
    output_tensor = Concatenate(axis=1)([model1.output, model2.output])
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu",
                           name="conv2d_0_4")(output_tensor)
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu")(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = Dense(512, activation="relu")(output_tensor)
    output_tensor = Dense(num_classes)(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    model = Model([input_tensor1, input_tensor2], output_tensor)
    # print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])
    print(model.summary())

    model.fit([x_train, x_train],
              y_train,
              epochs=160,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.CIFAR10_CNN),
                  EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)
              ])
Esempio n. 3
0
def top_level_task():
  num_classes = 10

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  x_train = x_train.reshape(60000, 784)
  x_train = x_train.astype('float32')
  x_train /= 255
  y_train = y_train.astype('int32')
  y_train = np.reshape(y_train, (len(y_train), 1))
  print("shape: ", x_train.shape)
  
  # input_tensor1 = Input(shape=(256,))
  input_tensor11 = Input(shape=(256,))
  input_tensor12 = Input(shape=(256,))
  input_tensor2 = Input(shape=(256,))
  input_tensor3 = Input(shape=(256,))
  input_tensor4 = Input(shape=(256,))
  
  # t1 = Dense(512, activation="relu", name="dense1")(input_tensor1)
  # t1 = Dense(512, activation="relu", name="dense12")(t1)
  # model1 = Model(input_tensor1, t1)
  t11 = Dense(512, activation="relu", name="dense1")(input_tensor11)
  model11 = Model(input_tensor11, t11)
  t12 = model11(input_tensor12)
  t1 = Dense(512, activation="relu", name="dense12")(t12)
  model1 = Model(input_tensor12, t1)
  
  t2 = Dense(512, activation="relu", name="dense2")(input_tensor2)
  t2 = Dense(512, activation="relu", name="dense22")(t2)
  model2 = Model(input_tensor2, t2)
  t3 = Dense(512, activation="relu", name="dense3")(input_tensor3)
  t3 = Dense(512, activation="relu", name="dense33")(t3)
  model3 = Model(input_tensor3, t3)
  t4 = Dense(512, activation="relu", name="dense4")(input_tensor4)
  t4 = Dense(512, activation="relu", name="dense44")(t4)
  model4 = Model(input_tensor4, t4)
  
  input_tensor = Input(shape=(784,))
  t00 = Input(shape=(784,), name="input_00")
  t01 = Input(shape=(784,), name="input_01")
  t1 = model1(input_tensor)
  t2 = model2(input_tensor)
  t3 = model3(input_tensor)
  t4 = model4(input_tensor)
  output = Concatenate(axis=1)([t00, t01, t1, t2, t3, t4])
  output = Dense(num_classes)(output)
  output = Activation("softmax")(output)
  
  model = Model([t00, t01, input_tensor], output)

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  
  print(model.summary())

  model.fit([x_train, x_train, x_train], y_train, epochs=10, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)])
Esempio n. 4
0
def build_model(loader, args, permanent_dropout=True, silent=False):
    input_shapes = {}
    dropout_rate = args.dropout
    for fea_type, shape in loader.feature_shapes.items():
        base_type = fea_type.split('.')[0]
        if base_type in ['cell', 'drug']:
            if not silent:
                print('Feature encoding submodel for %s:', fea_type)
                #box.summary(print_fn=logger.debug)
            input_shapes[fea_type] = shape

    inputs = []
    encoded_inputs = []
    for fea_name, fea_type in loader.input_features.items():
        shape = loader.feature_shapes[fea_type]
        fea_input = Input(shape, name='input.' + fea_name)
        inputs.append(fea_input)
        if fea_type in input_shapes:
            if args.dense_cell_feature_layers is not None and base_type == 'cell':
                dense_feature_layers = args.dense_cell_feature_layers
            elif args.dense_drug_feature_layers is not None and base_type == 'drug':
                dense_feature_layers = args.dense_drug_feature_layers
            else:
                dense_feature_layers = args.dense_feature_layers
            input_model = build_feature_model(
                input_shape=shape,
                name=fea_type,
                dense_layers=dense_feature_layers,
                dropout_rate=dropout_rate,
                permanent_dropout=permanent_dropout)
            encoded = input_model(fea_input)
        else:
            encoded = fea_input
        encoded_inputs.append(encoded)

    merged = Concatenate(axis=1)(encoded_inputs)

    h = merged
    for i, layer in enumerate(args.dense):
        x = h
        h = Dense(layer, activation=args.activation)(h)
        if dropout_rate > 0:
            if permanent_dropout:
                h = PermanentDropout(dropout_rate)(h)
            else:
                h = Dropout(dropout_rate)(h)
        if args.residual:
            try:
                h = Add([h, x])
            except ValueError:
                pass
    output = Dense(1)(h)

    return Model(inputs, output)
Esempio n. 5
0
def cnn_concat():
    num_classes = 10

    img_rows, img_cols = 28, 28

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))

    input_tensor = Input(batch_shape=[0, 1, 28, 28], dtype="float32")

    t1 = Conv2D(filters=32,
                input_shape=(1, 28, 28),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")(input_tensor)
    t2 = Conv2D(filters=32,
                input_shape=(1, 28, 28),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")(input_tensor)
    output = Concatenate(axis=1)([t1, t2])
    output = Conv2D(filters=64,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),
                          padding="valid")(output)
    output = Flatten()(output)
    output = Dense(128, activation="relu")(output)
    output = Dense(num_classes)(output)
    output = Activation("softmax")(output)

    model = Model(input_tensor, output)
    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
Esempio n. 6
0
def mlp_concat():
    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32')
    print("shape: ", x_train.shape)

    input_tensor = Input(batch_shape=[0, 784], dtype="float32")

    t1 = Dense(512, input_shape=(784, ), activation="relu",
               name="dense1")(input_tensor)
    t2 = Dense(512, input_shape=(784, ), activation="relu",
               name="dense2")(input_tensor)
    t3 = Dense(512, input_shape=(784, ), activation="relu",
               name="dense3")(input_tensor)
    t4 = Dense(512, input_shape=(784, ), activation="relu",
               name="dense4")(input_tensor)
    output = Concatenate(axis=1)([t1, t2, t3, t4])
    output2 = Dense(512, activation="relu")(output)
    output3 = Dense(num_classes)(output2)
    output4 = Activation("softmax")(output3)

    model = Model(input_tensor, output4)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
def top_level_task():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    #teacher
    input_tensor1 = Input(shape=(3, 32, 32), dtype="float32")

    c1 = Conv2D(filters=32,
                input_shape=(3, 32, 32),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding="same",
                activation="relu")
    c2 = Conv2D(filters=32,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c3 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c4 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    d1 = Dense(512, activation="relu")
    d2 = Dense(num_classes)

    output_tensor = c1(input_tensor1)
    output_tensor = c2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="same")(output_tensor)
    output_tensor = c3(output_tensor)
    output_tensor = c4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = d1(output_tensor)
    output_tensor = d2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    teacher_model = Model(input_tensor1, output_tensor)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    teacher_model.fit(x_train, y_train, epochs=10)

    c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel)
    c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel)
    c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel)
    c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel)
    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    #d2_kernel *= 0

    c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1)
    print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape)

    #student model
    input_tensor2 = Input(shape=(3, 32, 32), dtype="float32")

    sc1_1 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding="same",
                   activation="relu")
    sc1_2 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding="same",
                   activation="relu")
    sc2 = Conv2D(filters=32,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc3 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc4 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sd1 = Dense(512, activation="relu")
    sd2 = Dense(num_classes)

    t1 = sc1_1(input_tensor2)
    t2 = sc1_2(input_tensor2)
    output_tensor = Concatenate(axis=1)([t1, t2])
    output_tensor = sc2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="same")(output_tensor)
    output_tensor = sc3(output_tensor)
    output_tensor = sc4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = sd1(output_tensor)
    output_tensor = sd2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    student_model = Model(input_tensor2, output_tensor)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias)
    sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias)
    sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias)
    sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)

    student_model.fit(x_train,
                      y_train,
                      epochs=160,
                      callbacks=[
                          VerifyMetrics(ModelAccuracy.CIFAR10_CNN),
                          EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)
                      ])
Esempio n. 8
0
def cifar_cnn_net2net():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    #x_train *= 0
    #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32')
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    #teacher
    input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    c1 = Conv2D(filters=32,
                input_shape=(3, 32, 32),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c2 = Conv2D(filters=32,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c3 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c4 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    d1 = Dense(512, activation="relu")
    d2 = Dense(num_classes)

    output_tensor = c1(input_tensor1)
    output_tensor = c2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = c3(output_tensor)
    output_tensor = c4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = d1(output_tensor)
    output_tensor = d2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    teacher_model = Model(input_tensor1, output_tensor)

    print(teacher_model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(optimizer=opt)

    teacher_model.fit(x_train, y_train, epochs=1)

    c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel)
    c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel)
    c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel)
    c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel)
    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    #d2_kernel *= 0

    c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1)
    print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape)

    #student model
    input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    sc1_1 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1),
                   activation="relu")
    sc1_2 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1),
                   activation="relu")
    sc2 = Conv2D(filters=32,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc3 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc4 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sd1 = Dense(512, activation="relu")
    sd2 = Dense(num_classes)

    t1 = sc1_1(input_tensor2)
    t2 = sc1_2(input_tensor2)
    output_tensor = Concatenate(axis=1)([t1, t2])
    output_tensor = sc2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = sc3(output_tensor)
    output_tensor = sc4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = sd1(output_tensor)
    output_tensor = sd2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    student_model = Model(input_tensor2, output_tensor)

    print(student_model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(optimizer=opt)

    sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias)
    sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias)
    sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias)
    sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)

    student_model.fit(x_train, y_train, epochs=1)