Esempio n. 1
0
def test_SfrFile():
    sfrout = SfrFile('../examples/data/sfr_examples/sfroutput2.txt')
    # will be None if pandas is not installed
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.layer.values[0] == 1
        assert df.column.values[0] == 169
        assert df.Cond.values[0] == 74510.0
        assert df.col18.values[3] == 1.288E+03

    sfrout = SfrFile('../examples/data/sfr_examples/test1tr.flw')
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.col16.values[-1] == 5.502E-02
        assert df.shape == (1080, 20)
Esempio n. 2
0
def read_sfr_output(mf2005_sfr_outputfile=None,
                    mf2005_SfrFile_instance=None,
                    mf6_sfr_stage_file=None,
                    mf6_sfr_budget_file=None,
                    model=None):
    """Read MF-2005 or MF-6 style SFR output; return as DataFrame.
    """

    if model.version == 'mf6':

        # get the budget output
        df = aggregate_mf6_stress_budget(mf6_sfr_budget_file)

        # get the stage data
        if mf6_sfr_stage_file is not None:
            stg = read_mf6_dependent_variable_output(mf6_sfr_stage_file,
                                                     text='stage')
            df.sort_values(by=['kstpkper', 'node'], inplace=True)
            stg.sort_values(by=['kstpkper', 'node'], inplace=True)
            na_reaches = np.isnan(df.time.values)
            df.loc[~na_reaches].to_csv('df.csv')
            stg.loc[~na_reaches].to_csv('stg.csv')
            #assert np.allclose(df.time.values, stg.time.values)
            assert np.allclose(df.loc[~na_reaches].time.values,
                               stg.loc[~na_reaches].time.values)
            assert np.array_equal(df.node.values, stg.node.values)
            df['stage'] = stg['stage']

        # get the row, column location of SFR cells
        if model.sfr is not None:
            rd = pd.DataFrame(model.sfr.packagedata.array.copy())
            assert rd.rno.min() == 0
            assert df.node.min() == 0
            if not isinstance(rd.cellid.values[0], int):
                rno_cellid = dict(zip(rd.rno, rd.cellid))
                for i, dim in enumerate(['k', 'i', 'j']):
                    df[dim] = pd.to_numeric(
                        [rno_cellid[rno][i] for rno in df.node.values],
                        errors='coerce')
                df.dropna(subset=['k', 'i', 'j'], axis=0, inplace=True)
                # can't convert to integers if nans are present
                for dim in ['k', 'i', 'j']:
                    df[dim] = df[dim].astype(int)
                    assert 'int' in df[dim].dtype.name

    else:
        # SFR output
        if mf2005_sfr_outputfile is not None:
            sfrobj = SfrFile(mf2005_sfr_outputfile)
        elif mf2005_SfrFile_instance is not None:
            sfrobj = mf2005_SfrFile_instance
        else:
            print(
                'Need path to SFR tabular budget output or FloPy SfrFile instance.'
            )

        df = sfrobj.df.copy()
        df.sort_values(by=['segment', 'reach'], inplace=True)

    return df
    def import_sfr_out(self, path=None, name=None, ext='.sfr.out'):
        """TODO: Docs

        :param path:  (Default value = None)
        :param name:  (Default value = None)
        :param ext:  (Default value = '.sfr.out')

        :returns: DataFrame, SFR data
        """
        if path:
            sfrout = SfrFile(os.path.join(path, name + ext))
            self.sfr_df = sfrout.get_dataframe()
        else:
            sfrout = SfrFile(os.path.join(self.data_folder, self.name + ext))
            self.sfr_df = sfrout.get_dataframe()
        # End if

        return self.sfr_df
Esempio n. 4
0
def test_SfrFile():
    common_names = [
        'layer', 'row', 'column', 'segment', 'reach', 'Qin', 'Qaquifer',
        'Qout', 'Qovr', 'Qprecip', 'Qet', 'stage', 'depth', 'width', 'Cond'
    ]
    sfrout = SfrFile('../examples/data/sfr_examples/sfroutput2.txt')
    assert sfrout.ncol == 18, sfrout.ncol
    assert sfrout.names == common_names + ['Qwt', 'delUzstor', 'gw_head'],\
        sfrout.names
    assert sfrout.times == [(0, 0), (49, 1)], sfrout.times
    # will be None if pandas is not installed
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.layer.values[0] == 1
        assert df.column.values[0] == 169
        assert df.Cond.values[0] == 74510.0
        assert df.gw_head.values[3] == 1.288E+03

    sfrout = SfrFile('../examples/data/sfr_examples/test1tr.flw')
    assert sfrout.ncol == 16, sfrout.ncol
    assert sfrout.names == common_names + ['gradient'], sfrout.names
    expected_times = [(0, 0), (4, 0),
                      (9, 0), (12, 0), (14, 0), (19, 0), (24, 0), (29, 0),
                      (32, 0), (34, 0), (39, 0), (44, 0), (49, 0), (0, 1),
                      (4, 1), (9, 1), (12, 1), (14, 1), (19, 1), (24, 1),
                      (29, 1), (32, 1), (34, 1), (39, 1), (44, 1), (45, 1),
                      (46, 1), (47, 1), (48, 1), (49, 1)]
    assert sfrout.times == expected_times, sfrout.times
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.gradient.values[-1] == 5.502E-02
        assert df.shape == (1080, 20)

    ml = flopy.modflow.Modflow.load('test1tr.nam',
                                    model_ws=path,
                                    exe_name='mf2005')
    ml.change_model_ws(outpath)
    ml.write_input()
    ml.run_model()

    sfrout = SfrFile(os.path.join(outpath, 'test1tr.flw'))
    assert sfrout.ncol == 16, sfrout.ncol
    assert sfrout.names == common_names + ['gradient'], sfrout.names
    expected_times = [(0, 0), (4, 0),
                      (9, 0), (12, 0), (14, 0), (19, 0), (24, 0), (29, 0),
                      (32, 0), (34, 0), (39, 0), (44, 0), (49, 0), (0, 1),
                      (4, 1), (9, 1), (12, 1), (14, 1), (19, 1), (24, 1),
                      (29, 1), (32, 1), (34, 1), (39, 1), (44, 1), (45, 1),
                      (46, 1), (47, 1), (48, 1), (49, 1)]
    assert sfrout.times == expected_times, sfrout.times
Esempio n. 5
0
def test_SfrFile():
    sfrout = SfrFile('../examples/data/sfr_examples/sfroutput2.txt')
    # will be None if pandas is not installed
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.layer.values[0] == 1
        assert df.column.values[0] == 169
        assert df.Cond.values[0] == 74510.0
        assert df.col18.values[3] == 1.288E+03

    sfrout = SfrFile('../examples/data/sfr_examples/test1tr.flw')
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.col16.values[-1] == 5.502E-02
        assert df.shape == (1080, 20)
Esempio n. 6
0
def read_sfr_output(mf2005_sfr_outputfile=None,
                    mf2005_SfrFile_instance=None,
                    mf6_sfr_stage_file=None,
                    mf6_sfr_budget_file=None,
                    mf6_package_data=None,
                    model=None, grid_type='structured'):
    """Read MF-2005 or MF-6 style SFR output; return as DataFrame.
    """
    model_version = None
    packagedata = None
    if model is not None:
        model_version = model.version
        if model_version == 'mf6':
            packagedata = pd.DataFrame(model.sfr.packagedata.array.copy())
    elif mf6_package_data is not None:
        model_version = 'mf6'
        if isinstance(mf6_package_data, str) or isinstance(mf6_package_data, Path):
            
            skiprows = 0
            names = None
            with open(mf6_package_data) as src:
                for line in src:
                    if line.strip().startswith('#'):
                        names = line.strip().split()
                        skiprows += 1
                    else:
                        ncol = len(line.strip().split())
                        break
                        
            if names is None:
                if grid_type == 'structured':
                    names = ['rno', 'k', 'i', 'j', 'rlen', 'rwid', 'rgrd', 'rtp', 'rbth', 'rhk',
                            'man', 'ncon', 'ustrf', 'ndv']
                else:
                    names = ['rno', 'cellid', 'rlen', 'rwid', 'rgrd', 'rtp', 'rbth', 'rhk',
                            'man', 'ncon', 'ustrf', 'ndv']
                for i, _ in enumerate(range(len(names), ncol)):
                    names.append(f'aux_col{i+1}')
            else:
                names[0] = names[0].strip('#')
            
            # read the packagedata as a string to handle "none" values
            with open(mf6_package_data) as src:
                raw_pd = src.read()
                raw_pd = raw_pd.lower().replace('none', '0 0 0')
            packagedata = pd.read_csv(io.StringIO(raw_pd), names=names, 
                                      skiprows=skiprows, delim_whitespace=True)
            for col in ['rno', 'k', 'i', 'j']:
                if col in packagedata:
                    packagedata[col] -= 1
            if 'cellid' in packagedata.columns:
                if not isinstance(packagedata['cellid'][0], int):
                    packagedata['cellid'] = [(c[0]-1, c[1] -1, c[2] -1) for c in packagedata['cellid']]
                else:
                    packagedata['cellid'] -=1
        else:
            # make the dataframe on the .array attribute for flopy objects
            # or mf6_package_data is assumed to be array-like
            packagedata = pd.DataFrame(getattr(mf6_package_data, 'array', mf6_package_data))

    if model_version == 'mf6':

        # get the budget output
        df = aggregate_mf6_stress_budget(mf6_sfr_budget_file)

        # get the stage data
        if mf6_sfr_stage_file is not None:
            stg = read_mf6_dependent_variable_output(mf6_sfr_stage_file,
                                                     text='stage')
            df.sort_values(by=['kstpkper', 'node'], inplace=True)
            stg.sort_values(by=['kstpkper', 'node'], inplace=True)
            df.set_index(['kstpkper', 'node'], inplace=True)
            stg.set_index(['kstpkper', 'node'], inplace=True)
            na_reaches = np.isnan(df.time.values)
            #df.loc[~na_reaches].to_csv('df.csv')
            #stg.loc[~na_reaches].to_csv('stg.csv')
            #assert np.allclose(df.time.values, stg.time.values)
            assert np.allclose(df.loc[~na_reaches].time.values,
                               stg.loc[~na_reaches].time.values)
            assert np.array_equal(df.index, stg.index)
            df['stage'] = stg['stage']
            df.reset_index(inplace=True)

        # get the row, column location of SFR cells;
        # compute stream depths
        if packagedata is not None:
            rd = packagedata
            # convert reach number to zero-based
            if rd.rno.min() == 1:     
                rd['rno'] -= 1
            assert rd.rno.min() == 0
            assert df.node.min() == 0
                
            rno_strtop = dict(zip(rd.rno, rd.rtp))
            df['strtop'] = pd.to_numeric([rno_strtop[rno] for rno in df.node.values], errors='coerce')
            # fill nan stages with their streambed tops
            isna = df['stage'].isna()
            df.loc[isna, 'stage'] = df.loc[isna, 'strtop']
            df['depth'] = df['stage'] - df['strtop']
                
            if 'cellid' not in rd.columns:
                rd['cellid'] = list(zip(rd['k'], rd['i'], rd['j']))
                
            rno_cellid = dict(zip(rd.rno, rd.cellid))
            for i, dim in enumerate(['k', 'i', 'j']):
                df[dim] = pd.to_numeric([rno_cellid[rno][i] for rno in df.node.values], errors='coerce')
            df.dropna(subset=['k', 'i', 'j'], axis=0, inplace=True)
            # can't convert to integers if nans are present
            for dim in ['k', 'i', 'j']:
                df[dim] = df[dim].astype(int)
                assert 'int' in df[dim].dtype.name


    else:
        # SFR output
        if mf2005_sfr_outputfile is not None:
            sfrobj = SfrFile(mf2005_sfr_outputfile)
        elif mf2005_SfrFile_instance is not None:
            sfrobj = mf2005_SfrFile_instance
        else:
            print('Need path to SFR tabular budget output or FloPy SfrFile instance.')

        df = sfrobj.df.copy()
        df.sort_values(by=['segment', 'reach'], inplace=True)

    return df
Esempio n. 7
0
def test_SfrFile():
    common_names = [
        "layer",
        "row",
        "column",
        "segment",
        "reach",
        "Qin",
        "Qaquifer",
        "Qout",
        "Qovr",
        "Qprecip",
        "Qet",
        "stage",
        "depth",
        "width",
        "Cond",
    ]
    sfrout = SfrFile("../examples/data/sfr_examples/sfroutput2.txt")
    assert sfrout.ncol == 18, sfrout.ncol
    assert sfrout.names == common_names + [
        "Qwt",
        "delUzstor",
        "gw_head",
    ], sfrout.names
    assert sfrout.times == [(0, 0), (49, 1)], sfrout.times
    # will be None if pandas is not installed
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.layer.values[0] == 1
        assert df.column.values[0] == 169
        assert df.Cond.values[0] == 74510.0
        assert df.gw_head.values[3] == 1.288e03

    sfrout = SfrFile("../examples/data/sfr_examples/test1tr.flw")
    assert sfrout.ncol == 16, sfrout.ncol
    assert sfrout.names == common_names + ["gradient"], sfrout.names
    expected_times = [
        (0, 0),
        (4, 0),
        (9, 0),
        (12, 0),
        (14, 0),
        (19, 0),
        (24, 0),
        (29, 0),
        (32, 0),
        (34, 0),
        (39, 0),
        (44, 0),
        (49, 0),
        (0, 1),
        (4, 1),
        (9, 1),
        (12, 1),
        (14, 1),
        (19, 1),
        (24, 1),
        (29, 1),
        (32, 1),
        (34, 1),
        (39, 1),
        (44, 1),
        (45, 1),
        (46, 1),
        (47, 1),
        (48, 1),
        (49, 1),
    ]
    assert sfrout.times == expected_times, sfrout.times
    if sfrout.pd is not None:
        df = sfrout.get_dataframe()
        assert df.gradient.values[-1] == 5.502e-02
        assert df.shape == (1080, 20)

    ml = flopy.modflow.Modflow.load("test1tr.nam",
                                    model_ws=path,
                                    exe_name="mf2005")
    ml.change_model_ws(outpath)
    ml.write_input()
    ml.run_model()

    sfrout = SfrFile(os.path.join(outpath, "test1tr.flw"))
    assert sfrout.ncol == 16, sfrout.ncol
    assert sfrout.names == common_names + ["gradient"], sfrout.names
    expected_times = [
        (0, 0),
        (4, 0),
        (9, 0),
        (12, 0),
        (14, 0),
        (19, 0),
        (24, 0),
        (29, 0),
        (32, 0),
        (34, 0),
        (39, 0),
        (44, 0),
        (49, 0),
        (0, 1),
        (4, 1),
        (9, 1),
        (12, 1),
        (14, 1),
        (19, 1),
        (24, 1),
        (29, 1),
        (32, 1),
        (34, 1),
        (39, 1),
        (44, 1),
        (45, 1),
        (46, 1),
        (47, 1),
        (48, 1),
        (49, 1),
    ]
    assert sfrout.times == expected_times, sfrout.times