Esempio n. 1
0
    def test_reward(self):
        """Check the reward function for different values.

        The reward function should be a linear combination of the average speed
        of all vehicles and a penalty on the requested accelerations by the
        AVs.
        """
        # create the environment
        env = WaveAttenuationPOEnv(sim_params=self.sim_params,
                                   scenario=self.scenario,
                                   env_params=self.env_params)
        env.reset()

        # check the reward for no acceleration

        env.k.vehicle.test_set_speed('human_0', 0)
        env.k.vehicle.test_set_speed('rl_0', 0)
        self.assertAlmostEqual(env.compute_reward(rl_actions=[0], fail=False),
                               0)

        env.k.vehicle.test_set_speed('human_0', 0)
        env.k.vehicle.test_set_speed('rl_0', 1)
        self.assertAlmostEqual(env.compute_reward(rl_actions=[0], fail=False),
                               0.1)

        env.k.vehicle.test_set_speed('human_0', 1)
        env.k.vehicle.test_set_speed('rl_0', 1)
        self.assertAlmostEqual(env.compute_reward(rl_actions=[0], fail=False),
                               0.2)

        # check the fail option

        env.k.vehicle.test_set_speed('human_0', 1)
        env.k.vehicle.test_set_speed('rl_0', 1)
        self.assertAlmostEqual(env.compute_reward(rl_actions=[0], fail=True),
                               0)

        # check the effect of RL actions

        env.k.vehicle.test_set_speed('human_0', 1)
        env.k.vehicle.test_set_speed('rl_0', 1)
        self.assertAlmostEqual(env.compute_reward(rl_actions=None, fail=False),
                               0)

        env.k.vehicle.test_set_speed('human_0', 1)
        env.k.vehicle.test_set_speed('rl_0', 1)
        self.assertAlmostEqual(env.compute_reward(rl_actions=[1], fail=False),
                               -3.8)
Esempio n. 2
0
    def test_observation_action_space(self):
        """Tests the observation and action spaces upon initialization."""
        # create the environment
        env = WaveAttenuationPOEnv(
            sumo_params=self.sumo_params,
            scenario=self.scenario,
            env_params=self.env_params
        )

        # check the observation space
        self.assertTrue(test_space(
            env.observation_space,
            expected_size=3, expected_min=0, expected_max=1))

        # check the action space
        self.assertTrue(test_space(
            env.action_space,
            expected_size=1, expected_min=-1, expected_max=1))

        env.terminate()
Esempio n. 3
0
    def test_observation_action_space(self):
        """Tests the observation and action spaces upon initialization."""
        # create the environment
        env = WaveAttenuationPOEnv(sim_params=self.sim_params,
                                   network=self.network,
                                   env_params=self.env_params)

        # check the observation space
        self.assertTrue(
            test_space(env.observation_space,
                       expected_size=3,
                       expected_min=-float('inf'),
                       expected_max=float('inf')))

        # check the action space
        self.assertTrue(
            test_space(env.action_space,
                       expected_size=1,
                       expected_min=-1,
                       expected_max=1))

        env.terminate()