def compute_contrast_for_table(luminance, kernel): 
    contrast = numpy.ndarray(shape=luminance.shape, dtype=luminance.dtype)
    contrast[:]['time'] = luminance[:]['time']
    contrast[:]['frame'] = luminance[:]['frame']
    contrast[:]['obj_id'] = luminance[:]['obj_id']
    
    num = len(luminance)
    pbar = progress_bar('Computing contrast', num)
    
    for i in xrange(num):
        pbar.update(i)
        y = luminance[i]['value'].astype('float32')
        c = intrinsic_contrast(y, kernel)
        contrast[i]['value'][:] = c
        
    return contrast
def main():
    sigma_deg = 6
    kernel1 = get_contrast_kernel(sigma_deg=sigma_deg, eyes_interact=True)
    kernel2 = get_contrast_kernel(sigma_deg=sigma_deg, eyes_interact=False) # better
    
    kernel1 = kernel1.astype('float32')
    kernel2 = kernel2.astype('float32')
    
    meany = Expectation()
    ex1 = Expectation()
    ex2 = Expectation()
    
    cp = ClientProcess()
    cp.config_use_white_arena()    
    cp.config_stimulus_xml(example_stim_xml)
    #position = [0.15, 0.5, 0.25]
    position = [0.35, 0.5, 0.25]
    linear_velocity_body = [0, 0, 0]
    angular_velocity_body = [0, 0, 0]
    
    #from flydra_render.contrast import  intrinsic_contrast
    from fast_contrast import  intrinsic_contrast #@UnresolvedImport

    
    N = 360
    
    pb = progress_bar('Computing contrast', N)
    
    orientation = numpy.linspace(0, 2 * numpy.pi, N)
    for i, theta in enumerate(orientation):
        attitude = rotz(theta)
        
        pb.update(i)
        res = cp.render(position, attitude,
                        linear_velocity_body, angular_velocity_body)
    
        y = numpy.array(res['luminance']).astype('float32')
        
        meany.update(y)
        #y = numpy.random.rand(1398)
        
        c1 = intrinsic_contrast(y, kernel1)
        c2 = intrinsic_contrast(y, kernel2)
        
    
        ex1.update(c1)
        ex2.update(c2)

    r = Report()
    r.data_rgb('meany', scale(values2retina(meany.get_value())))
    r.data_rgb('mean1', plot_contrast(ex1.get_value()))
    r.data_rgb('mean2', plot_contrast(ex2.get_value()))
    r.data_rgb('one-y', (plot_luminance(y)))
    r.data_rgb('one-c1', plot_contrast(c1))
    r.data_rgb('one-c2', plot_contrast(c2))
    
    r.data_rgb('kernel', scale(values2retina(kernel2[100, :])))
    
    f = r.figure(shape=(2, 3))
    f.sub('one-y', 'One random image')
    f.sub('one-c1', 'Contrast of random image')
    f.sub('one-c2', 'Contrast of random image')
    f.sub('meany', 'Mean luminance')
    f.sub('mean1', 'Mean over %s samples' % N)
    f.sub('mean2', 'Mean over %s samples' % N)
    f.sub('kernel')
    
    filename = 'compute_contrast_demo.html'
    print("Writing on %s" % filename)
    r.to_html(filename)
def render_saccades_view(saccades, stimulus_xml, host=None, white=False):
   
    client = get_rfsee_client(host)
        
    if white: # before stimulus_xml
        client.config_use_white_arena()
        
    client.config_stimulus_xml(stimulus_xml)    
    

    num_frames = len(saccades)
    dtype = [('time', 'float64'),
             ('obj_id', 'int'),
             ('frame', 'int'),
             ('value', ('float32', 1398))]
    view_start = numpy.zeros(shape=(num_frames,), dtype=dtype)
    view_stop = numpy.zeros(shape=(num_frames,), dtype=dtype)
    view_rstop = numpy.zeros(shape=(num_frames,), dtype=dtype)
    view_random = numpy.zeros(shape=(num_frames,), dtype=dtype)
    view_sstop = numpy.zeros(shape=(num_frames,), dtype=dtype)
    
    pb = progress_bar('Rendering saccades', num_frames)
    
    for i in range(num_frames):
        pb.update(i)
        
        saccade = saccades[i]
        orientation_start = numpy.radians(saccade['orientation_start'])
        orientation_stop = numpy.radians(saccade['orientation_stop'])
        
        # simulate how it would look like sampling from a random distribution
        random_index = numpy.random.randint(0, len(saccades))
        random_displacement = \
            numpy.radians(saccades[random_index]['amplitude']) * \
            saccades[random_index]['sign']
        orientation_rstop = orientation_start + random_displacement
        
        # keep the sign, use random amplitude
        srandom_displacement = \
            numpy.radians(saccades[random_index]['amplitude']) * \
                saccade['sign']
        orientation_sstop = orientation_start + srandom_displacement
        
        # finally, a random orientation
        orientation_random = numpy.random.rand() * 2 * numpy.pi
        
        position = saccade['position']
        attitude_start = rotz(orientation_start)
        attitude_stop = rotz(orientation_stop)
        attitude_rstop = rotz(orientation_rstop)
        attitude_random = rotz(orientation_random)
        attitude_sstop = rotz(orientation_sstop)
        
        
        linear_velocity_body = [0, 0, 0]
        angular_velocity_body = [0, 0, 0]
        
        res_start = client.render(position, attitude_start,
                                  linear_velocity_body,
                                  angular_velocity_body)
        res_stop = client.render(position, attitude_stop,
                                  linear_velocity_body,
                                  angular_velocity_body)
        res_rstop = client.render(position, attitude_rstop,
                                  linear_velocity_body,
                                  angular_velocity_body)
        res_random = client.render(position, attitude_random,
                                  linear_velocity_body,
                                  angular_velocity_body)
        res_sstop = client.render(position, attitude_sstop,
                                  linear_velocity_body,
                                  angular_velocity_body)
        
        view_start['value'][i] = numpy.array(res_start['luminance'])
        view_stop['value'][i] = numpy.array(res_stop['luminance'])
        view_rstop['value'][i] = numpy.array(res_rstop['luminance'])
        view_random['value'][i] = numpy.array(res_random['luminance'])
        view_sstop['value'][i] = numpy.array(res_sstop['luminance'])
        
        # copy other fields
        for arr in [view_start, view_stop, view_rstop, view_random]:
            arr['frame'][i] = saccades[i]['frame']
            arr['obj_id'][i] = saccades[i]['obj_id']
            arr['time'][i] = saccades[i]['time_middle']
             
    
    client.close()

    return view_start, view_stop, view_rstop, view_random, view_sstop
Esempio n. 4
0
def render(rows, stimulus_xml, host=None, compute_mu=False,
           white=False):
    
    cp = get_rfsee_client(host)
    

    if white: # before stimulus_xml
        cp.config_use_white_arena()

    cp.config_stimulus_xml(stimulus_xml)    
    cp.config_compute_mu(compute_mu)

    num_frames = len(rows)
    dtype = [('time', 'float64'),
             ('obj_id', 'int'),
             ('frame', 'int'),
             ('value', ('float32', 1398))]
    luminance = numpy.zeros(shape=(num_frames,), dtype=dtype)
    
    # copy index fields
    copy_fields = ['time', 'frame', 'obj_id'] 
    for field in copy_fields: 
        luminance[field] = rows[:][field]
    
    if compute_mu:
        nearness = numpy.zeros(shape=(num_frames,), dtype=dtype)
        dtype = [('time', 'float64'),
                 ('obj_id', 'int'),
             ('frame', 'int'),
             ('value', ('float32', (1398, 2)))]
        retinal_velocities = numpy.zeros(shape=(num_frames,), dtype=dtype)
        
        for a in [nearness, retinal_velocities]:
            for field in copy_fields:
                a[field] = rows[:][field]
      
    pb = progress_bar('Rendering', num_frames)
    
    for i in range(num_frames):
        pb.update(i)
        
        position = rows[i]['position']
        attitude = rows[i]['attitude']
        linear_velocity_body = rows[i]['linear_velocity_body']
        angular_velocity_body = rows[i]['angular_velocity_body']
         
        res = cp.render(position, attitude, linear_velocity_body,
                        angular_velocity_body)
        
        luminance['value'][i] = numpy.array(res['luminance'])
        
        if compute_mu:
            nearness['value'][i] = numpy.array(res['nearness'])
            retinal_velocities['value'][i] = numpy.array(res['retinal_velocities'])
    
    res = {'luminance': luminance}
    if compute_mu:
        res['retinal_velocities'] = retinal_velocities
        res['nearness'] = nearness
    
    cp.close()

    return res