Esempio n. 1
0
def test_enum_type():
    t = TypeEngine.to_literal_type(Color)
    assert t is not None
    assert t.enum_type is not None
    assert t.enum_type.values
    assert t.enum_type.values == [c.value for c in Color]

    ctx = FlyteContextManager.current_context()
    lv = TypeEngine.to_literal(ctx, Color.RED, Color, TypeEngine.to_literal_type(Color))
    assert lv
    assert lv.scalar
    assert lv.scalar.primitive.string_value == "red"

    v = TypeEngine.to_python_value(ctx, lv, Color)
    assert v
    assert v == Color.RED

    v = TypeEngine.to_python_value(ctx, lv, str)
    assert v
    assert v == "red"

    with pytest.raises(ValueError):
        TypeEngine.to_python_value(ctx, Literal(scalar=Scalar(primitive=Primitive(string_value=str(Color.RED)))), Color)

    with pytest.raises(ValueError):
        TypeEngine.to_python_value(ctx, Literal(scalar=Scalar(primitive=Primitive(string_value="bad"))), Color)

    with pytest.raises(AssertionError):
        TypeEngine.to_literal_type(UnsupportedEnumValues)
Esempio n. 2
0
def test_zero_floats():
    ctx = FlyteContext.current_context()

    l0 = Literal(scalar=Scalar(primitive=Primitive(integer=0)))
    l1 = Literal(scalar=Scalar(primitive=Primitive(float_value=0.0)))

    assert TypeEngine.to_python_value(ctx, l0, float) == 0
    assert TypeEngine.to_python_value(ctx, l1, float) == 0
Esempio n. 3
0
def test_list_transformer():
    l0 = Literal(scalar=Scalar(primitive=Primitive(integer=3)))
    l1 = Literal(scalar=Scalar(primitive=Primitive(integer=4)))
    lc = LiteralCollection(literals=[l0, l1])
    lit = Literal(collection=lc)

    ctx = FlyteContext.current_context()
    xx = TypeEngine.to_python_value(ctx, lit, typing.List[int])
    assert xx == [3, 4]
Esempio n. 4
0
    def convert(
            self,
            value: typing.Any,
            python_type_hint: typing.Optional[typing.Type] = None) -> Scalar:
        if self.primitive_type:
            return Scalar(primitive=Primitive(**{self.primitive_type: value}))
        if self.scalar_type:
            return Scalar(**{self.scalar_type: value})

        raise NotImplementedError("Not implemented yet!")
Esempio n. 5
0
def test_protos():
    ctx = FlyteContext.current_context()

    pb = errors_pb2.ContainerError(code="code", message="message")
    lt = TypeEngine.to_literal_type(errors_pb2.ContainerError)
    assert lt.simple == SimpleType.STRUCT
    assert lt.metadata["pb_type"] == "flyteidl.core.errors_pb2.ContainerError"

    lit = TypeEngine.to_literal(ctx, pb, errors_pb2.ContainerError, lt)
    new_python_val = TypeEngine.to_python_value(ctx, lit, errors_pb2.ContainerError)
    assert new_python_val == pb

    # Test error
    l0 = Literal(scalar=Scalar(primitive=Primitive(integer=4)))
    with pytest.raises(AssertionError):
        TypeEngine.to_python_value(ctx, l0, errors_pb2.ContainerError)
Esempio n. 6
0
    def to_literal(
        self,
        ctx: FlyteContext,
        python_val: Union[FlyteFile, FlyteSchema, str],
        python_type: Type[GreatExpectationsType],
        expected: LiteralType,
    ) -> Literal:
        datatype = GreatExpectationsTypeTransformer.get_config(python_type)[0]

        if issubclass(datatype, FlyteSchema):
            return FlyteSchemaTransformer().to_literal(ctx, python_val,
                                                       datatype, expected)
        elif issubclass(datatype, FlyteFile):
            return FlyteFilePathTransformer().to_literal(
                ctx, python_val, datatype, expected)
        elif issubclass(datatype, str):
            return Literal(scalar=Scalar(primitive=Primitive(
                string_value=python_val)))
        else:
            raise TypeError(f"{datatype} is not a supported type")
Esempio n. 7
0
def test_dict_transformer():
    d = DictTransformer()

    def assert_struct(lit: LiteralType):
        assert lit is not None
        assert lit.simple == SimpleType.STRUCT

    def recursive_assert(lit: LiteralType,
                         expected: LiteralType,
                         expected_depth: int = 1,
                         curr_depth: int = 0):
        assert curr_depth <= expected_depth
        assert lit is not None
        if lit.map_value_type is None:
            assert lit == expected
            return
        recursive_assert(lit.map_value_type, expected, expected_depth,
                         curr_depth + 1)

    # Type inference
    assert_struct(d.get_literal_type(dict))
    assert_struct(d.get_literal_type(typing.Dict[int, int]))
    recursive_assert(d.get_literal_type(typing.Dict[str, str]),
                     LiteralType(simple=SimpleType.STRING))
    recursive_assert(d.get_literal_type(typing.Dict[str, int]),
                     LiteralType(simple=SimpleType.INTEGER))
    recursive_assert(d.get_literal_type(typing.Dict[str, datetime.datetime]),
                     LiteralType(simple=SimpleType.DATETIME))
    recursive_assert(d.get_literal_type(typing.Dict[str, datetime.timedelta]),
                     LiteralType(simple=SimpleType.DURATION))
    recursive_assert(d.get_literal_type(typing.Dict[str, dict]),
                     LiteralType(simple=SimpleType.STRUCT))
    recursive_assert(
        d.get_literal_type(typing.Dict[str, typing.Dict[str, str]]),
        LiteralType(simple=SimpleType.STRING),
        expected_depth=2,
    )
    recursive_assert(
        d.get_literal_type(typing.Dict[str, typing.Dict[int, str]]),
        LiteralType(simple=SimpleType.STRUCT),
        expected_depth=2,
    )
    recursive_assert(
        d.get_literal_type(typing.Dict[str, typing.Dict[str,
                                                        typing.Dict[str,
                                                                    str]]]),
        LiteralType(simple=SimpleType.STRING),
        expected_depth=3,
    )
    recursive_assert(
        d.get_literal_type(typing.Dict[str, typing.Dict[str,
                                                        typing.Dict[str,
                                                                    dict]]]),
        LiteralType(simple=SimpleType.STRUCT),
        expected_depth=3,
    )
    recursive_assert(
        d.get_literal_type(typing.Dict[str, typing.Dict[str,
                                                        typing.Dict[int,
                                                                    dict]]]),
        LiteralType(simple=SimpleType.STRUCT),
        expected_depth=2,
    )

    ctx = FlyteContext.current_context()

    lit = d.to_literal(ctx, {}, typing.Dict, LiteralType(SimpleType.STRUCT))
    pv = d.to_python_value(ctx, lit, typing.Dict)
    assert pv == {}

    # Literal to python
    with pytest.raises(TypeError):
        d.to_python_value(
            ctx, Literal(scalar=Scalar(primitive=Primitive(integer=10))), dict)
    with pytest.raises(TypeError):
        d.to_python_value(ctx, Literal(), dict)
    with pytest.raises(TypeError):
        d.to_python_value(ctx, Literal(map=LiteralMap(literals={"x": None})),
                          dict)
    with pytest.raises(TypeError):
        d.to_python_value(ctx, Literal(map=LiteralMap(literals={"x": None})),
                          typing.Dict[int, str])

    d.to_python_value(
        ctx,
        Literal(map=LiteralMap(
            literals={
                "x": Literal(scalar=Scalar(primitive=Primitive(integer=1)))
            })),
        typing.Dict[str, int],
    )
Esempio n. 8
0
def _register_default_type_transformers():
    TypeEngine.register(
        SimpleTransformer(
            "int",
            int,
            _primitives.Integer.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(integer=x))),
            lambda x: x.scalar.primitive.integer,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "float",
            float,
            _primitives.Float.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(float_value=x))
                              ),
            _check_and_covert_float,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "bool",
            bool,
            _primitives.Boolean.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(boolean=x))),
            lambda x: x.scalar.primitive.boolean,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "str",
            str,
            _primitives.String.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(string_value=x)
                                            )),
            lambda x: x.scalar.primitive.string_value,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "datetime",
            _datetime.datetime,
            _primitives.Datetime.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(datetime=x))),
            lambda x: x.scalar.primitive.datetime,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "timedelta",
            _datetime.timedelta,
            _primitives.Timedelta.to_flyte_literal_type(),
            lambda x: Literal(scalar=Scalar(primitive=Primitive(duration=x))),
            lambda x: x.scalar.primitive.duration,
        ))

    TypeEngine.register(
        SimpleTransformer(
            "none",
            None,
            _type_models.LiteralType(simple=_type_models.SimpleType.NONE),
            lambda x: None,
            lambda x: None,
        ))
    TypeEngine.register(ListTransformer())
    TypeEngine.register(DictTransformer())
    TypeEngine.register(TextIOTransformer())
    TypeEngine.register(PathLikeTransformer())
    TypeEngine.register(BinaryIOTransformer())

    # inner type is. Also unsupported are typing's Tuples. Even though you can look inside them, Flyte's type system
    # doesn't support these currently.
    # Confusing note: typing.NamedTuple is in here even though task functions themselves can return them. We just mean
    # that the return signature of a task can be a NamedTuple that contains another NamedTuple inside it.
    # Also, it's not entirely true that Flyte IDL doesn't support tuples. We can always fake them as structs, but we'll
    # hold off on doing that for now, as we may amend the IDL formally to support tuples.
    TypeEngine.register(RestrictedType("non typed tuple", tuple))
    TypeEngine.register(RestrictedType("non typed tuple", typing.Tuple))
    TypeEngine.register(RestrictedType("named tuple", typing.NamedTuple))
Esempio n. 9
0
 def to_literal(self, ctx: FlyteContext, python_val: T, python_type: Type[T], expected: LiteralType) -> Literal:
     return Literal(scalar=Scalar(primitive=Primitive(string_value=python_val.value)))
Esempio n. 10
0
def test_interface():
    ctx = FlyteContextManager.current_context()
    lt = TypeEngine.to_literal_type(pd.DataFrame)
    df = pd.DataFrame({"name": ["Tom", "Joseph"], "age": [20, 22]})

    annotated_sd_type = Annotated[StructuredDataset, kwtypes(name=str, age=int)]
    df_literal_type = TypeEngine.to_literal_type(annotated_sd_type)
    assert df_literal_type.structured_dataset_type is not None
    assert len(df_literal_type.structured_dataset_type.columns) == 2
    assert df_literal_type.structured_dataset_type.columns[0].name == "name"
    assert df_literal_type.structured_dataset_type.columns[0].literal_type.simple is not None
    assert df_literal_type.structured_dataset_type.columns[1].name == "age"
    assert df_literal_type.structured_dataset_type.columns[1].literal_type.simple is not None

    sd = annotated_sd_type(df)
    sd_literal = TypeEngine.to_literal(ctx, sd, python_type=annotated_sd_type, expected=lt)

    lm = {
        "my_map": Literal(
            map=LiteralMap(
                literals={
                    "k1": Literal(scalar=Scalar(primitive=Primitive(string_value="v1"))),
                    "k2": Literal(scalar=Scalar(primitive=Primitive(string_value="2"))),
                },
            )
        ),
        "my_list": Literal(
            collection=LiteralCollection(
                literals=[
                    Literal(scalar=Scalar(primitive=Primitive(integer=1))),
                    Literal(scalar=Scalar(primitive=Primitive(integer=2))),
                    Literal(scalar=Scalar(primitive=Primitive(integer=3))),
                ]
            )
        ),
        "val_a": Literal(scalar=Scalar(primitive=Primitive(integer=21828))),
        "my_df": sd_literal,
    }

    variable_map = {
        "my_map": interface_models.Variable(type=TypeEngine.to_literal_type(typing.Dict[str, str]), description=""),
        "my_list": interface_models.Variable(type=TypeEngine.to_literal_type(typing.List[int]), description=""),
        "val_a": interface_models.Variable(type=TypeEngine.to_literal_type(int), description=""),
        "my_df": interface_models.Variable(type=df_literal_type, description=""),
    }

    lr = LiteralsResolver(lm, variable_map=variable_map, ctx=ctx)
    assert lr._ctx is ctx

    with pytest.raises(ValueError):
        lr["not"]  # noqa

    with pytest.raises(ValueError):
        lr.get_literal("not")

    # Test that just using [] works, guessing from the Flyte type is invoked
    result = lr["my_list"]
    assert result == [1, 2, 3]

    # Test that using get works, guessing from the Flyte type is invoked
    result = lr.get("my_map")
    assert result == {
        "k1": "v1",
        "k2": "2",
    }

    # Getting the literal will return the Literal object itself
    assert lr.get_literal("my_df") is sd_literal

    guessed_df = lr["my_df"]
    # Based on guessing, so no column information
    assert len(guessed_df.metadata.structured_dataset_type.columns) == 0
    guessed_df_2 = lr["my_df"]
    assert guessed_df is guessed_df_2

    # Update type hints with the annotated type
    lr.update_type_hints({"my_df": annotated_sd_type})
    del lr._native_values["my_df"]
    guessed_df = lr.get("my_df")
    # Using the user specified type, so number of columns is correct.
    assert len(guessed_df.metadata.structured_dataset_type.columns) == 2
Esempio n. 11
0
from flytekit import kwtypes
from flytekit.core.context_manager import FlyteContextManager
from flytekit.core.type_engine import LiteralsResolver, TypeEngine
from flytekit.models import interface as interface_models
from flytekit.models.literals import Literal, LiteralCollection, LiteralMap, Primitive, Scalar
from flytekit.types.structured.structured_dataset import StructuredDataset


@pytest.mark.parametrize(
    "literal_value,python_type,expected_python_value",
    [
        (
            Literal(
                collection=LiteralCollection(
                    literals=[
                        Literal(scalar=Scalar(primitive=Primitive(integer=1))),
                        Literal(scalar=Scalar(primitive=Primitive(integer=2))),
                        Literal(scalar=Scalar(primitive=Primitive(integer=3))),
                    ]
                )
            ),
            typing.List[int],
            [1, 2, 3],
        ),
        (
            Literal(
                map=LiteralMap(
                    literals={
                        "k1": Literal(scalar=Scalar(primitive=Primitive(string_value="v1"))),
                        "k2": Literal(scalar=Scalar(primitive=Primitive(string_value="2"))),
                    },