Esempio n. 1
0
def generate_distances(mols, args):
    t = time.time()
    if args.method in ["bob", "cm", "ucm"]:
        X = np.asarray([mol.descriptor for mol in mols], dtype=float)
        if args.exponents[0] == 1:
            D = manhattan_distance(X.T, X.T)
        else:
            # prevent overflow in l2
            X = X[:, (X > 1.5).all(0)]
            D = l2_distance(X.T, X.T)
    else:
        #X = np.asarray([np.concatenate(mol.local_descriptor) for mol in mols])
        #D = manhattan_distance(X.T, X.T)
        # initialize
        D = np.zeros((len(mols), len(mols)), dtype=float)
        resids = np.unique(mols[0].residues)
        for res in resids:
            if args.ca:
                indices = np.where((mols[0].residues == res)
                                   & (mols[0].atomnames == "CA"))[0]
            else:
                indices = np.where(mols[0].residues == res)[0]
            D_res = np.zeros((len(mols), len(mols)), dtype=float)
            for i in indices:
                X = np.asarray([mol.local_descriptor[i] for mol in mols])
                if args.exponents[2] == 1:
                    D_res += manhattan_distance(X.T, X.T)**args.exponents[1]
                else:
                    D_res += l2_distance(X.T, X.T)**args.exponents[1]
            if args.exponents[1] == 2:
                np.sqrt(D_res, out=D_res)
            D += D_res**args.exponents[0]
    if args.exponents[0] == 2:
        np.sqrt(D, out=D)

    print "Generated distances in %.1f seconds" % (time.time() - t)
    return D
Esempio n. 2
0
    # Set hyper-parameters
    sigma = 10**(4.2)
    llambda = 10**(-10.0)

    # print "Calculating K-matrix           ...",
    print(u"Calculating: K\u1D62\u2C7C = k(q\u1D62, q\u2C7C)          ... ",
          end="")
    sys.stdout.flush()
    start = time.time()

    # Gaussian kernel usually better for atomic properties
    # K = gaussian_kernel(X, X, sigma)

    # Alternatively, just calculate the L2 distance, and convert
    # to kernel matrix (e.g. for multiple sigmas, etc):
    D = l2_distance(X, X)
    D /= -2.0 * sigma * sigma
    D = np.exp(K)

    print("%7.2f seconds" % (time.time() - start))

    for i in xrange(n_train):
        K[i, i] += llambda

    print(u"Calculating: \u03B1 = (K + \u03BBI)\u207B\u00B9 y         ... ",
          end="")
    sys.stdout.flush()
    start = time.time()
    alpha = cho_solve(K, Y)
    print("%7.2f seconds" % (time.time() - start))
Esempio n. 3
0
    sigma = float(sys.argv[1])
    llambda = float(sys.argv[2])
    xyz_file = sys.argv[3]

    mol = Molecule()
    mol.read_xyz(xyz_file)
    mol.generate_atomic_coulomb_matrix()

    Ys = np.zeros((mol.natoms))

    s = (-0.5 / sigma**2)

    print "Running predicition ..."
    for a, atom in enumerate(mol.atomtypes):

        Xs = np.reshape(mol.atomic_coulomb_matrix[a],
                        (len(mol.atomic_coulomb_matrix[a]), 1))

        Ds = l2_distance(Xs, X[atom])
        Ds *= s
        np.array(np.exp(Ds, Ds))

        Ys[a] = np.dot(Ds[0, :], alpha[atom])

    error = np.sum(Ys)
    Ys -= np.mean(Ys)

    print "Final charges:"
    for i, q in enumerate(Ys):
        print "%s  %12.8f" % (mol.atomtypes[i], q)