def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, T],
        *,
        early_stop: Optional[float] = None,
        starting_points: Optional[T] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        originals, restore_type = ep.astensor_(inputs)
        del inputs, kwargs

        criterion = get_criterion(criterion)
        is_adversarial = get_is_adversarial(criterion, model)

        if starting_points is None:
            init_attack: MinimizationAttack
            if self.init_attack is None:
                init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50)
                logging.info(
                    f"Neither starting_points nor init_attack given. Falling"
                    f" back to {init_attack!r} for initialization.")
            else:
                init_attack = self.init_attack
            # TODO: use call and support all types of attacks (once early_stop is
            # possible in __call__)
            best_advs = init_attack.run(model,
                                        originals,
                                        criterion,
                                        early_stop=early_stop)
        else:
            best_advs = ep.astensor(starting_points)

        is_adv = is_adversarial(best_advs)
        if not is_adv.all():
            failed = is_adv.logical_not().float32().sum()
            if starting_points is None:
                raise ValueError(
                    f"init_attack failed for {failed} of {len(is_adv)} inputs")
            else:
                raise ValueError(
                    f"{failed} of {len(is_adv)} starting_points are not adversarial"
                )
        del starting_points

        tb = TensorBoard(logdir=self.tensorboard)

        N = len(originals)
        ndim = originals.ndim
        spherical_steps = ep.ones(originals, N) * self.spherical_step
        source_steps = ep.ones(originals, N) * self.source_step

        tb.scalar("batchsize", N, 0)

        # create two queues for each sample to track success rates
        # (used to update the hyper parameters)
        stats_spherical_adversarial = ArrayQueue(maxlen=100, N=N)
        stats_step_adversarial = ArrayQueue(maxlen=30, N=N)

        bounds = model.bounds

        self.class_1 = []
        self.class_2 = []

        self.surrogate_model = None
        device = model.device
        train_step = 500

        for step in tqdm(range(1, self.steps + 1)):
            converged = source_steps < self.source_step_convergance
            if converged.all():
                break  # pragma: no cover
            converged = atleast_kd(converged, ndim)

            # TODO: performance: ignore those that have converged
            # (we could select the non-converged ones, but we currently
            # cannot easily invert this in the end using EagerPy)

            unnormalized_source_directions = originals - best_advs
            source_norms = ep.norms.l2(flatten(unnormalized_source_directions),
                                       axis=-1)
            source_directions = unnormalized_source_directions / atleast_kd(
                source_norms, ndim)

            # only check spherical candidates every k steps
            check_spherical_and_update_stats = step % self.update_stats_every_k == 0

            candidates, spherical_candidates = draw_proposals(
                bounds, originals, best_advs, unnormalized_source_directions,
                source_directions, source_norms, spherical_steps, source_steps,
                self.surrogate_model)
            candidates.dtype == originals.dtype
            spherical_candidates.dtype == spherical_candidates.dtype

            is_adv = is_adversarial(candidates)
            is_adv_spherical_candidates = is_adversarial(spherical_candidates)

            if is_adv.item():
                self.class_1.append(candidates)

            if not is_adv_spherical_candidates.item():
                self.class_2.append(spherical_candidates)

            if (step % train_step == 0) and (step > 0):

                start_time = time()

                class_1 = self.class_1
                class_2 = self.class_2

                class_1 = np.array([image.numpy()[0] for image in class_1])
                class_2 = np.array([image.numpy()[0] for image in class_2])

                class_2 = class_2[:len(class_1)]
                data = np.concatenate([class_1, class_2])
                labels = np.append(np.ones(len(class_1)),
                                   np.zeros(len(class_2)))

                X = torch.tensor(data).to(device)
                y = torch.tensor(labels, dtype=torch.long).to(device)

                if self.surrogate_model is None:
                    model_sur = torchvision.models.resnet18(pretrained=True)
                    #model.features[0] = torch.nn.Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
                    model_sur.fc = torch.nn.Linear(in_features=512,
                                                   out_features=2,
                                                   bias=True)
                    model_sur = model_sur.to(device)
                else:
                    model_sur = model_surrogate

                X_train, X_test, y_train, y_test = train_test_split(
                    X, y, test_size=0.2, random_state=42)

                optimizer = torch.optim.Adam(model_sur.parameters(), lr=3e-4)
                loss = torch.nn.CrossEntropyLoss()

                model_surrogate, accuracy_history_test, accuracy_history_train = train(
                    model_sur, optimizer, loss, X_train, y_train, X_test,
                    y_test)
                model_surrogate = model_surrogate.eval()

                self.surrogate_model = fb.PyTorchModel(model_surrogate,
                                                       bounds=(0, 1),
                                                       device=device)

                end_time = time()

                #print('Time for train: ', np.round(end_time - start_time, 2))
                #print('\n')

            spherical_is_adv: Optional[ep.Tensor]
            if check_spherical_and_update_stats:
                spherical_is_adv = is_adversarial(spherical_candidates)
                stats_spherical_adversarial.append(spherical_is_adv)
                # TODO: algorithm: the original implementation ignores those samples
                # for which spherical is not adversarial and continues with the
                # next iteration -> we estimate different probabilities (conditional vs. unconditional)
                # TODO: thoughts: should we always track this because we compute it anyway
                stats_step_adversarial.append(is_adv)
            else:
                spherical_is_adv = None

            # in theory, we are closer per construction
            # but limited numerical precision might break this
            distances = ep.norms.l2(flatten(originals - candidates), axis=-1)
            closer = distances < source_norms
            is_best_adv = ep.logical_and(is_adv, closer)
            is_best_adv = atleast_kd(is_best_adv, ndim)

            cond = converged.logical_not().logical_and(is_best_adv)
            best_advs = ep.where(cond, candidates, best_advs)

            tb.probability("converged", converged, step)
            tb.scalar("updated_stats", check_spherical_and_update_stats, step)
            tb.histogram("norms", source_norms, step)
            tb.probability("is_adv", is_adv, step)
            if spherical_is_adv is not None:
                tb.probability("spherical_is_adv", spherical_is_adv, step)
            tb.histogram("candidates/distances", distances, step)
            tb.probability("candidates/closer", closer, step)
            tb.probability("candidates/is_best_adv", is_best_adv, step)
            tb.probability("new_best_adv_including_converged", is_best_adv,
                           step)
            tb.probability("new_best_adv", cond, step)

            if check_spherical_and_update_stats:
                full = stats_spherical_adversarial.isfull()
                tb.probability("spherical_stats/full", full, step)
                if full.any():
                    probs = stats_spherical_adversarial.mean()
                    cond1 = ep.logical_and(probs > 0.5, full)
                    spherical_steps = ep.where(
                        cond1, spherical_steps * self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.2, full)
                    spherical_steps = ep.where(
                        cond2, spherical_steps / self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_spherical_adversarial.clear(
                        ep.logical_or(cond1, cond2))
                    tb.conditional_mean(
                        "spherical_stats/isfull/success_rate/mean", probs,
                        full, step)
                    tb.probability_ratio("spherical_stats/isfull/too_linear",
                                         cond1, full, step)
                    tb.probability_ratio(
                        "spherical_stats/isfull/too_nonlinear", cond2, full,
                        step)

                full = stats_step_adversarial.isfull()
                tb.probability("step_stats/full", full, step)
                if full.any():
                    probs = stats_step_adversarial.mean()
                    # TODO: algorithm: changed the two values because we are currently tracking p(source_step_sucess)
                    # instead of p(source_step_success | spherical_step_sucess) that was tracked before
                    cond1 = ep.logical_and(probs > 0.25, full)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.1, full)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_step_adversarial.clear(ep.logical_or(cond1, cond2))
                    tb.conditional_mean("step_stats/isfull/success_rate/mean",
                                        probs, full, step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_high", cond1, full,
                        step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_low", cond2, full,
                        step)

            tb.histogram("spherical_step", spherical_steps, step)
            tb.histogram("source_step", source_steps, step)
        tb.close()
        return restore_type(best_advs)
Esempio n. 2
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Misclassification, TargetedMisclassification, T],
        *,
        starting_points: Optional[ep.Tensor] = None,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        criterion_ = get_criterion(criterion)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
        else:
            raise ValueError("unsupported criterion")

        def loss_fn(
            inputs: ep.Tensor, labels: ep.Tensor
        ) -> Tuple[ep.Tensor, Tuple[ep.Tensor, ep.Tensor]]:

            logits = model(inputs)

            if targeted:
                c_minimize = best_other_classes(logits, labels)
                c_maximize = labels  # target_classes
            else:
                c_minimize = labels  # labels
                c_maximize = best_other_classes(logits, labels)

            loss = logits[rows, c_minimize] - logits[rows, c_maximize]

            return -loss.sum(), (logits, loss)

        x, restore_type = ep.astensor_(inputs)
        del inputs, criterion, kwargs
        N = len(x)

        # start from initialization points/attack
        if starting_points is not None:
            x1 = starting_points
        else:
            if self.init_attack is not None:
                x1 = self.init_attack.run(model, x, criterion_)
            else:
                x1 = None

        # if initial points or initialization attacks are provided,
        #   search for the boundary
        if x1 is not None:
            is_adv = get_is_adversarial(criterion_, model)
            assert is_adv(x1).all()
            lower_bound = ep.zeros(x, shape=(N, ))
            upper_bound = ep.ones(x, shape=(N, ))
            for _ in range(self.binary_search_steps):
                epsilons = (lower_bound + upper_bound) / 2
                mid_points = self.mid_points(x, x1, epsilons, model.bounds)
                is_advs = is_adv(mid_points)
                lower_bound = ep.where(is_advs, lower_bound, epsilons)
                upper_bound = ep.where(is_advs, epsilons, upper_bound)
            starting_points = self.mid_points(x, x1, upper_bound, model.bounds)
            delta = starting_points - x
        else:
            # start from x0
            delta = ep.zeros_like(x)

        if classes.shape != (N, ):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}")

        min_, max_ = model.bounds
        rows = range(N)
        grad_and_logits = ep.value_and_grad_fn(x, loss_fn, has_aux=True)

        if self.p != 0:
            epsilon = ep.inf * ep.ones(x, len(x))
        else:
            epsilon = ep.ones(x, len(x)) if x1 is None \
                else ep.norms.l0(flatten(delta), axis=-1)
        if self.p != 0:
            worst_norm = ep.norms.lp(flatten(ep.maximum(x - min_, max_ - x)),
                                     p=self.p,
                                     axis=-1)
        else:
            worst_norm = flatten(ep.ones_like(x)).bool().sum(axis=1).float32()

        best_lp = worst_norm
        best_delta = delta
        adv_found = ep.zeros(x, len(x)).bool()

        for i in range(self.steps):
            # perform cosine annealing of learning rates
            stepsize = (self.min_stepsize +
                        (self.max_stepsize - self.min_stepsize) *
                        (1 + math.cos(math.pi * i / self.steps)) / 2)
            gamma = (0.001 + (self.gamma - 0.001) *
                     (1 + math.cos(math.pi * (i / self.steps))) / 2)

            x_adv = x + delta

            loss, (logits,
                   loss_batch), gradients = grad_and_logits(x_adv, classes)
            is_adversarial = criterion_(x_adv, logits)

            lp = ep.norms.lp(flatten(delta), p=self.p, axis=-1)
            is_smaller = lp <= best_lp
            is_both = ep.logical_and(is_adversarial, is_smaller)
            adv_found = ep.logical_or(adv_found, is_adversarial)
            best_lp = ep.where(is_both, lp, best_lp)
            best_delta = ep.where(atleast_kd(is_both, x.ndim), delta,
                                  best_delta)

            # update epsilon
            if self.p != 0:
                distance_to_boundary = abs(loss_batch) / ep.norms.lp(
                    flatten(gradients), p=self.dual, axis=-1)
                epsilon = ep.where(
                    is_adversarial,
                    ep.minimum(
                        epsilon * (1 - gamma),
                        ep.norms.lp(flatten(best_delta), p=self.p, axis=-1)),
                    ep.where(
                        adv_found, epsilon * (1 + gamma),
                        ep.norms.lp(flatten(delta), p=self.p, axis=-1) +
                        distance_to_boundary))
            else:
                epsilon = ep.where(
                    is_adversarial,
                    ep.minimum(
                        ep.minimum(epsilon - 1,
                                   (epsilon * (1 - gamma)).astype(int).astype(
                                       epsilon.dtype)),
                        ep.norms.lp(flatten(best_delta), p=self.p, axis=-1)),
                    ep.maximum(epsilon + 1,
                               (epsilon * (1 + gamma)).astype(int).astype(
                                   epsilon.dtype)))
                epsilon = ep.maximum(0, epsilon).astype(epsilon.dtype)

            # clip epsilon
            epsilon = ep.minimum(epsilon, worst_norm)

            # computes normalized gradient update
            grad_ = self.normalize(gradients, x=x,
                                   bounds=model.bounds) * stepsize

            # do step
            delta = delta + grad_

            # project according to the given norm
            delta = self.project(x=x + delta, x0=x, epsilon=epsilon) - x

            # clip to valid bounds
            delta = ep.clip(x + delta, *model.bounds) - x

        x_adv = x + best_delta
        return restore_type(x_adv)
Esempio n. 3
0
    def run(self, model, inputs, criterion, *, early_stop, **kwargs):
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        N = len(x)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
            change_classes_logits = self.confidence
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
            change_classes_logits = -self.confidence
        else:
            raise ValueError("unsupported criterion")

        def is_adversarial(perturbed: ep.Tensor, logits: ep.Tensor) -> ep.Tensor:
            if change_classes_logits != 0:
                logits += ep.onehot_like(logits, classes, value=change_classes_logits)
            return criterion_(perturbed, logits)

        if classes.shape != (N,):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}"
            )

        bounds = model.bounds
        to_attack_space = partial(_to_attack_space, bounds=bounds)
        to_model_space = partial(_to_model_space, bounds=bounds)

        x_attack = to_attack_space(x)
        reconstsructed_x = to_model_space(x_attack)

        rows = range(N)

        def loss_fun(delta, consts):
            assert delta.shape == x_attack.shape
            assert consts.shape == (N,)

            x = to_model_space(x_attack + delta)
            logits = model(x)

            if targeted:
                c_minimize = best_other_classes(logits, classes)
                c_maximize = classes  # target_classes
            else:
                c_minimize = classes  # labels
                c_maximize = best_other_classes(logits, classes)

            is_adv_loss = logits[rows, c_minimize] - logits[rows, c_maximize]
            assert is_adv_loss.shape == (N,)

            is_adv_loss = is_adv_loss + self.confidence
            is_adv_loss = ep.maximum(0, is_adv_loss)
            is_adv_loss = is_adv_loss * consts

            squared_norms = flatten(x - reconstsructed_x).square().sum(axis=-1)
            loss = is_adv_loss.sum() + squared_norms.sum()
            return loss, (x, logits)

        loss_aux_and_grad = ep.value_and_grad_fn(x, loss_fun, has_aux=True)

        consts = self.initial_const * np.ones((N,))
        lower_bounds = np.zeros((N,))
        upper_bounds = np.inf * np.ones((N,))

        best_advs = ep.zeros_like(x)
        best_advs_norms = ep.full(x, (N,), ep.inf)

        self._consts = []
        self._steps_per_iter = []
        self._best_const = -1
        # the binary search searches for the smallest consts that produce adversarials
        for binary_search_step in range(self.binary_search_steps):
            if (
                    binary_search_step == self.binary_search_steps - 1
                    and self.binary_search_steps >= 10
            ):
                # in the last binary search step, repeat the search once
                consts = np.minimum(upper_bounds, 1e10)

            iter_step = 0

            # create a new optimizer find the delta that minimizes the loss
            delta = ep.zeros_like(x_attack)
            optimizer = AdamOptimizer(delta)

            # tracks whether adv with the current consts was found
            found_advs = np.full((N,), fill_value=False)
            loss_at_previous_check = np.inf

            consts_ = ep.from_numpy(x, consts.astype(np.float32))

            for step in range(self.steps):
                loss, (perturbed, logits), gradient = loss_aux_and_grad(delta, consts_)
                delta += optimizer(gradient, self.stepsize)

                if self.abort_early and step % (np.ceil(self.steps / 10)) == 0:
                    # after each tenth of the overall steps, check progress
                    if not (loss <= 0.9999 * loss_at_previous_check):
                        break  # stop Adam if there has been no progress
                    loss_at_previous_check = loss

                iter_step += 1

                found_advs_iter = is_adversarial(perturbed, logits)
                found_advs = np.logical_or(found_advs, found_advs_iter.numpy())

                norms = flatten(perturbed - x).norms.l2(axis=-1)
                closer = norms < best_advs_norms
                new_best = ep.logical_and(closer, found_advs_iter)
                if closer and found_advs_iter:
                    self._best_const = binary_search_step

                new_best_ = atleast_kd(new_best, best_advs.ndim)
                best_advs = ep.where(new_best_, perturbed, best_advs)
                best_advs_norms = ep.where(new_best, norms, best_advs_norms)
                self._consts.append(consts_.numpy().tolist())

            self._steps_per_iter.append(iter_step)

            upper_bounds = np.where(found_advs, consts, upper_bounds)
            lower_bounds = np.where(found_advs, lower_bounds, consts)

            consts_exponential_search = consts * 10
            consts_binary_search = (lower_bounds + upper_bounds) / 2
            consts = np.where(
                np.isinf(upper_bounds), consts_exponential_search, consts_binary_search
            )

        return restore_type(best_advs)
Esempio n. 4
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, Any] = None,
        *,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        is_adversarial = get_is_adversarial(criterion_, model)

        min_, max_ = model.bounds

        N = len(x)
        self.qcount = 0

        for j in range(self.directions):
            # random noise inputs tend to be classified into the same class,
            # so we might need to make very many draws if the original class
            # is that one
            random_ = ep.uniform(x, x.shape, min_, max_)
            is_adv_ = atleast_kd(is_adversarial(random_), x.ndim)
            self.qcount += 1
            if j == 0:
                random = random_
                is_adv = is_adv_
            else:
                random = ep.where(is_adv, random, random_)
                is_adv = is_adv.logical_or(is_adv_)

            if is_adv.all():
                break

        if not is_adv.all():
            warnings.warn(
                f"{self.__class__.__name__} failed to draw sufficient random"
                f" inputs that are adversarial ({is_adv.sum()} / {N}).")

        x0 = x

        epsilons = np.linspace(0, 1, num=self.steps + 1, dtype=np.float32)
        best = ep.ones(x, (N, ))

        for epsilon in epsilons:
            x = (1 - epsilon) * x0 + epsilon * random
            # TODO: due to limited floating point precision, clipping can be required
            is_adv = is_adversarial(x)
            self.qcount += 1

            epsilon = epsilon.item()

            best = ep.minimum(ep.where(is_adv, epsilon, 1.0), best)

            if (best < 1).all():
                break

        best = atleast_kd(best, x0.ndim)
        x = (1 - best) * x0 + best * random

        return restore_type(x)
Esempio n. 5
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, T],
        *,
        early_stop: Optional[float] = None,
        starting_points: Optional[T] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        originals, restore_type = ep.astensor_(inputs)
        device = inputs.device
        del inputs, kwargs

        criterion = get_criterion(criterion)
        is_adversarial = get_is_adversarial(criterion, model)

        self.qcount = 0
        self.normHistory = np.zeros((int)(self.steps / 100) + 1)

        if starting_points is None:
            init_attack: MinimizationAttack
            if self.init_attack is None:
                init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50)
                logging.info(
                    f"Neither starting_points nor init_attack given. Falling"
                    f" back to {init_attack!r} for initialization.")
            else:
                init_attack = self.init_attack
            # TODO: use call and support all types of attacks (once early_stop is
            # possible in __call__)
            best_advs = init_attack.run(model,
                                        originals,
                                        criterion,
                                        early_stop=early_stop)
            self.qcount += init_attack.qcount
        else:  #move starting points to boundary
            epsilons = np.linspace(0, 1, num=50 + 1, dtype=np.float32)
            best = ep.ones(originals, (len(originals), ))
            for epsilon in epsilons:
                x = (1 - epsilon) * originals + epsilon * starting_points
                is_adv = is_adversarial(x)
                self.qcount += 1

                epsilon = epsilon.item()

                best = ep.minimum(ep.where(is_adv, epsilon, 1.0), best)
                if (best < 1).all():
                    break

            best = atleast_kd(best, originals.ndim)
            x = (1 - best) * originals + best * starting_points
            best_advs = ep.astensor(x)

        self.normHistory[0:] = ep.norms.l2(flatten(best_advs - originals),
                                           axis=-1).numpy()

        is_adv = is_adversarial(best_advs)
        self.qcount += 1
        if not is_adv.all():
            failed = is_adv.logical_not().float32().sum()
            if starting_points is None:
                raise ValueError(
                    f"init_attack failed for {failed} of {len(is_adv)} inputs")
            else:
                raise ValueError(
                    f"{failed} of {len(is_adv)} starting_points are not adversarial"
                )
        del starting_points

        tb = TensorBoard(logdir=self.tensorboard)

        N = len(originals)
        ndim = originals.ndim
        spherical_steps = ep.ones(originals, N) * self.spherical_step
        source_steps = ep.ones(originals, N) * self.source_step

        tb.scalar("batchsize", N, 0)

        # create two queues for each sample to track success rates
        # (used to update the hyper parameters)
        stats_spherical_adversarial = ArrayQueue(maxlen=100, N=N)
        stats_step_adversarial = ArrayQueue(maxlen=30, N=N)

        bounds = model.bounds

        for step in range(1, self.steps + 1):
            converged = source_steps < self.source_step_convergance
            if converged.all():
                break  # pragma: no cover
            converged = atleast_kd(converged, ndim)

            # TODO: performance: ignore those that have converged
            # (we could select the non-converged ones, but we currently
            # cannot easily invert this in the end using EagerPy)

            unnormalized_source_directions = originals - best_advs
            source_norms = ep.norms.l2(flatten(unnormalized_source_directions),
                                       axis=-1)
            source_directions = unnormalized_source_directions / atleast_kd(
                source_norms, ndim)

            # only check spherical candidates every k steps
            check_spherical_and_update_stats = step % self.update_stats_every_k == 0

            candidates, spherical_candidates = draw_proposals(
                bounds, originals, best_advs, unnormalized_source_directions,
                source_directions, source_norms, spherical_steps, source_steps,
                self.surrogate_models, self.ODS, device)
            candidates.dtype == originals.dtype
            spherical_candidates.dtype == spherical_candidates.dtype

            is_adv = is_adversarial(candidates)

            self.qcount += 1
            if self.qcount % 100 == 0:
                self.normHistory[(int)(self.qcount / 100):] = ep.norms.l2(
                    flatten(best_advs - originals), axis=-1).numpy()
                if self.qcount >= self.steps:
                    break

            spherical_is_adv: Optional[ep.Tensor]
            if check_spherical_and_update_stats:
                spherical_is_adv = is_adversarial(spherical_candidates)
                self.qcount += 1
                if self.qcount % 100 == 0:
                    self.normHistory[(int)(self.qcount / 100):] = ep.norms.l2(
                        flatten(best_advs - originals), axis=-1).numpy()
                    if self.qcount >= self.steps:
                        break

                stats_spherical_adversarial.append(spherical_is_adv)
                # TODO: algorithm: the original implementation ignores those samples
                # for which spherical is not adversarial and continues with the
                # next iteration -> we estimate different probabilities (conditional vs. unconditional)
                # TODO: thoughts: should we always track this because we compute it anyway
                stats_step_adversarial.append(is_adv)
            else:
                spherical_is_adv = None

            # in theory, we are closer per construction
            # but limited numerical precision might break this
            distances = ep.norms.l2(flatten(originals - candidates), axis=-1)
            closer = distances < source_norms
            is_best_adv = ep.logical_and(is_adv, closer)
            is_best_adv = atleast_kd(is_best_adv, ndim)

            cond = converged.logical_not().logical_and(is_best_adv)
            best_advs = ep.where(cond, candidates, best_advs)

            tb.probability("converged", converged, step)
            tb.scalar("updated_stats", check_spherical_and_update_stats, step)
            tb.histogram("norms", source_norms, step)
            tb.probability("is_adv", is_adv, step)
            if spherical_is_adv is not None:
                tb.probability("spherical_is_adv", spherical_is_adv, step)
            tb.histogram("candidates/distances", distances, step)
            tb.probability("candidates/closer", closer, step)
            tb.probability("candidates/is_best_adv", is_best_adv, step)
            tb.probability("new_best_adv_including_converged", is_best_adv,
                           step)
            tb.probability("new_best_adv", cond, step)

            if check_spherical_and_update_stats:
                full = stats_spherical_adversarial.isfull()
                tb.probability("spherical_stats/full", full, step)
                if full.any():
                    probs = stats_spherical_adversarial.mean()
                    cond1 = ep.logical_and(probs > 0.5, full)
                    spherical_steps = ep.where(
                        cond1, spherical_steps * self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.2, full)
                    spherical_steps = ep.where(
                        cond2, spherical_steps / self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_spherical_adversarial.clear(
                        ep.logical_or(cond1, cond2))
                    tb.conditional_mean(
                        "spherical_stats/isfull/success_rate/mean", probs,
                        full, step)
                    tb.probability_ratio("spherical_stats/isfull/too_linear",
                                         cond1, full, step)
                    tb.probability_ratio(
                        "spherical_stats/isfull/too_nonlinear", cond2, full,
                        step)

                full = stats_step_adversarial.isfull()
                tb.probability("step_stats/full", full, step)
                if full.any():
                    probs = stats_step_adversarial.mean()
                    # TODO: algorithm: changed the two values because we are currently tracking p(source_step_sucess)
                    # instead of p(source_step_success | spherical_step_sucess) that was tracked before
                    cond1 = ep.logical_and(probs > 0.25, full)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.1, full)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_step_adversarial.clear(ep.logical_or(cond1, cond2))
                    tb.conditional_mean("step_stats/isfull/success_rate/mean",
                                        probs, full, step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_high", cond1, full,
                        step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_low", cond2, full,
                        step)

            tb.histogram("spherical_step", spherical_steps, step)
            tb.histogram("source_step", source_steps, step)
        tb.close()
        return restore_type(best_advs)
Esempio n. 6
0
    def run(
        self,
        model,
        inputs,
        criterion,
        *,
        early_stop=None,
        **kwargs: Any,
    ):
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        N = len(x)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
            change_classes_logits = self.confidence
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
            change_classes_logits = -self.confidence
        else:
            raise ValueError("unsupported criterion")

        def is_adversarial(perturbed: ep.Tensor,
                           logits: ep.Tensor) -> ep.Tensor:
            if change_classes_logits != 0:
                logits += ep.onehot_like(logits,
                                         classes,
                                         value=change_classes_logits)
            return criterion_(perturbed, logits)

        if classes.shape != (N, ):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}")

        min_, max_ = model.bounds
        rows = range(N)

        def loss_fun(y_k: ep.Tensor,
                     consts: ep.Tensor) -> Tuple[ep.Tensor, ep.Tensor]:
            assert y_k.shape == x.shape
            assert consts.shape == (N, )

            logits = model(y_k)

            if targeted:
                c_minimize = _best_other_classes(logits, classes)
                c_maximize = classes
            else:
                c_minimize = classes
                c_maximize = _best_other_classes(logits, classes)

            is_adv_loss = logits[rows, c_minimize] - logits[rows, c_maximize]
            assert is_adv_loss.shape == (N, )

            is_adv_loss = is_adv_loss + self.confidence
            is_adv_loss = ep.maximum(0, is_adv_loss)
            is_adv_loss = is_adv_loss * consts

            squared_norms = ep.flatten(y_k - x).square().sum(axis=-1)
            loss = is_adv_loss.sum() + squared_norms.sum()
            return loss, logits

        loss_aux_and_grad = ep.value_and_grad_fn(x, loss_fun, has_aux=True)

        consts = self.initial_const * ep.ones(x, (N, ))
        lower_bounds = ep.zeros(x, (N, ))
        upper_bounds = ep.inf * ep.ones(x, (N, ))

        best_advs = ep.zeros_like(x)
        best_advs_norms = ep.ones(x, (N, )) * ep.inf

        self._consts = []
        self._steps_per_iter = []
        self._best_const = -1
        last_advs_norms = best_advs_norms

        # the binary search searches for the smallest consts that produce adversarials
        for binary_search_step in range(self.binary_search_steps):
            if (binary_search_step == self.binary_search_steps - 1
                    and self.binary_search_steps >= 10):
                # in the last iteration, repeat the search once
                consts = ep.minimum(upper_bounds, 1e10)

            # create a new optimizer find the delta that minimizes the loss
            x_k = x
            y_k = x
            iter_step = 0
            found_advs = ep.full(
                x, (N, ),
                value=False).bool()  # found adv with the current consts
            loss_at_previous_check = ep.inf

            for iteration in range(self.steps):
                # square-root learning rate decay
                stepsize = self.initial_stepsize * (
                    1.0 - iteration / self.steps)**0.5

                loss, logits, gradient = loss_aux_and_grad(y_k, consts)

                x_k_old = x_k
                x_k = _project_shrinkage_thresholding(
                    y_k - stepsize * gradient, x, self.regularization, min_,
                    max_)
                y_k = x_k + iteration / (iteration + 3.0) * (x_k - x_k_old)

                if self.abort_early and iteration % (math.ceil(
                        self.steps / 10)) == 0:
                    # after each tenth of the iterations, check progress
                    if not loss.item() <= 0.9999 * loss_at_previous_check:
                        break  # stop optimization if there has been no progress
                    loss_at_previous_check = loss.item()
                iter_step += 1
                found_advs_iter = is_adversarial(x_k, model(x_k))

                best_advs, best_advs_norms = _apply_decision_rule(
                    self.decision_rule,
                    self.regularization,
                    best_advs,
                    best_advs_norms,
                    x_k,
                    x,
                    found_advs_iter,
                )

                if best_advs_norms < last_advs_norms:
                    self._best_const = binary_search_step
                    last_advs_norms = best_advs_norms

                found_advs = ep.logical_or(found_advs, found_advs_iter)
                self._consts.append(consts.numpy().tolist())

            self._steps_per_iter.append(iter_step)
            upper_bounds = ep.where(found_advs, consts, upper_bounds)
            lower_bounds = ep.where(found_advs, lower_bounds, consts)

            consts_exponential_search = consts * 10
            consts_binary_search = (lower_bounds + upper_bounds) / 2
            consts = ep.where(ep.isinf(upper_bounds),
                              consts_exponential_search, consts_binary_search)

        return restore_type(best_advs)
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, T],
        perlin_param,
        mask_param,
        *,
        early_stop: Optional[float] = None,
        starting_points: Optional[T] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        originals, restore_type = ep.astensor_(inputs)
        initial_pict = ep.astensor(inputs)
        #print('inputs', inputs.shape)
        del inputs, kwargs

        criterion = get_criterion(criterion)
        perlin_param = perlin_param
        is_adversarial = get_is_adversarial(criterion, model)

        if starting_points is None:
            init_attack: MinimizationAttack
            if self.init_attack is None:
                init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50)
                logging.info(
                    f"Neither starting_points nor init_attack given. Falling"
                    f" back to {init_attack!r} for initialization.")
            else:
                init_attack = self.init_attack
            # TODO: use call and support all types of attacks (once early_stop is
            # possible in __call__)
            best_advs = init_attack.run(model,
                                        originals,
                                        criterion,
                                        early_stop=early_stop)
        else:
            best_advs = ep.astensor(starting_points)

        is_adv = is_adversarial(best_advs)
        if not is_adv.all():
            failed = is_adv.logical_not().float32().sum()
            if starting_points is None:
                raise ValueError(
                    f"init_attack failed for {failed} of {len(is_adv)} inputs")
            else:
                raise ValueError(
                    f"{failed} of {len(is_adv)} starting_points are not adversarial"
                )
        del starting_points

        tb = TensorBoard(logdir=self.tensorboard)

        N = len(originals)
        ndim = originals.ndim
        spherical_steps = ep.ones(originals, N) * self.spherical_step
        source_steps = ep.ones(originals, N) * self.source_step

        tb.scalar("batchsize", N, 0)

        # create two queues for each sample to track success rates
        # (used to update the hyper parameters)
        stats_spherical_adversarial = ArrayQueue(maxlen=100, N=N)
        stats_step_adversarial = ArrayQueue(maxlen=30, N=N)

        bounds = model.bounds

        for step in range(1, self.steps + 1):
            converged = source_steps < self.source_step_convergance
            if converged.all():
                break  # pragma: no cover
            converged = atleast_kd(converged, ndim)

            # TODO: performance: ignore those that have converged
            # (we could select the non-converged ones, but we currently
            # cannot easily invert this in the end using EagerPy)

            unnormalized_source_directions = originals - best_advs
            source_norms = ep.norms.l2(flatten(unnormalized_source_directions),
                                       axis=-1)
            source_directions = unnormalized_source_directions / atleast_kd(
                source_norms, ndim)

            # only check spherical candidates every k steps
            check_spherical_and_update_stats = step % self.update_stats_every_k == 0

            #-------------START----------------
            # MASK
            new_mask = ep.abs(originals - best_advs)
            new_mask /= ep.max(new_mask)
            new_mask = new_mask**mask_param
            mask = new_mask

            # Perlin Noise
            #print('originals shape', originals.numpy().shape)
            perlin_noise = ep.astensor(
                torch.tensor([
                    get_perlin(originals.numpy()[0].transpose((1, 2, 0)),
                               perlin_param)
                ]).to('cuda'))
            #-----------END-----------------

            candidates, spherical_candidates = draw_proposals(
                bounds,
                originals,
                best_advs,
                unnormalized_source_directions,
                source_directions,
                source_norms,
                spherical_steps,
                source_steps,
                mask,
                perlin_noise,
            )
            candidates.dtype == originals.dtype
            spherical_candidates.dtype == spherical_candidates.dtype

            is_adv = is_adversarial(candidates)

            spherical_is_adv: Optional[ep.Tensor]
            if check_spherical_and_update_stats:
                spherical_is_adv = is_adversarial(spherical_candidates)
                stats_spherical_adversarial.append(spherical_is_adv)
                # TODO: algorithm: the original implementation ignores those samples
                # for which spherical is not adversarial and continues with the
                # next iteration -> we estimate different probabilities (conditional vs. unconditional)
                # TODO: thoughts: should we always track this because we compute it anyway
                stats_step_adversarial.append(is_adv)
            else:
                spherical_is_adv = None

            # in theory, we are closer per construction
            # but limited numerical precision might break this
            distances = ep.norms.l2(flatten(originals - candidates), axis=-1)
            closer = distances < source_norms
            is_best_adv = ep.logical_and(is_adv, closer)
            is_best_adv = atleast_kd(is_best_adv, ndim)

            cond = converged.logical_not().logical_and(is_best_adv)
            best_advs = ep.where(cond, candidates, best_advs)

            self.distances_iter[step - 1] = ep.norms.l2(
                flatten(initial_pict - best_advs)).numpy() / (3 * 32 * 32)

            tb.probability("converged", converged, step)
            tb.scalar("updated_stats", check_spherical_and_update_stats, step)
            tb.histogram("norms", source_norms, step)
            tb.probability("is_adv", is_adv, step)
            if spherical_is_adv is not None:
                tb.probability("spherical_is_adv", spherical_is_adv, step)
            tb.histogram("candidates/distances", distances, step)
            tb.probability("candidates/closer", closer, step)
            tb.probability("candidates/is_best_adv", is_best_adv, step)
            tb.probability("new_best_adv_including_converged", is_best_adv,
                           step)
            tb.probability("new_best_adv", cond, step)

            if check_spherical_and_update_stats:
                full = stats_spherical_adversarial.isfull()
                tb.probability("spherical_stats/full", full, step)
                if full.any():
                    probs = stats_spherical_adversarial.mean()
                    cond1 = ep.logical_and(probs > 0.5, full)
                    spherical_steps = ep.where(
                        cond1, spherical_steps * self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.2, full)
                    spherical_steps = ep.where(
                        cond2, spherical_steps / self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_spherical_adversarial.clear(
                        ep.logical_or(cond1, cond2))
                    tb.conditional_mean(
                        "spherical_stats/isfull/success_rate/mean", probs,
                        full, step)
                    tb.probability_ratio("spherical_stats/isfull/too_linear",
                                         cond1, full, step)
                    tb.probability_ratio(
                        "spherical_stats/isfull/too_nonlinear", cond2, full,
                        step)

                full = stats_step_adversarial.isfull()
                tb.probability("step_stats/full", full, step)
                if full.any():
                    probs = stats_step_adversarial.mean()
                    # TODO: algorithm: changed the two values because we are currently tracking p(source_step_sucess)
                    # instead of p(source_step_success | spherical_step_sucess) that was tracked before
                    cond1 = ep.logical_and(probs > 0.25, full)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.1, full)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_step_adversarial.clear(ep.logical_or(cond1, cond2))
                    tb.conditional_mean("step_stats/isfull/success_rate/mean",
                                        probs, full, step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_high", cond1, full,
                        step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_low", cond2, full,
                        step)

            tb.histogram("spherical_step", spherical_steps, step)
            tb.histogram("source_step", source_steps, step)
        tb.close()

        #print(ep.norms.l2(flatten(originals - best_advs), axis=-1).numpy())
        return restore_type(best_advs)
Esempio n. 8
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Misclassification, TargetedMisclassification, T],
        *,
        early_stop: Optional[float] = None,
        filenames=None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        # is_adversarial = get_is_adversarial(criterion, model)
        del inputs, criterion, kwargs
        N = len(x)
        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
        else:
            raise ValueError("unsupported criterion")

        if classes.shape != (N, ):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}")

        def loss_fn(inputs: ep.Tensor,
                    labels: ep.Tensor) -> Tuple[ep.Tensor, ep.Tensor]:
            logits = model(inputs)

            sign = -1.0 if targeted else 1.0
            # print("lss_fn ",logits, labels)
            loss = sign * ep.crossentropy(logits, labels).sum()

            return loss, logits

        grad_and_logits = ep.value_and_grad_fn(x, loss_fn, has_aux=True)

        image = Image.open('./test2.png')
        # image.show()
        # loader = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])

        logist_clean = model(x)
        logist_clean = logist_clean.argmax(1)
        wm = []
        one_batch_attack_success = 0
        wm_numpy = torch.from_numpy(
            np.array(image, dtype=np.float32).transpose([2, 0, 1]))
        for k in range(N):
            wm.append(wm_numpy)
        wm_tensor = torch.stack(wm)
        # with open('result_inception_v3_gen1_40.csv', 'a+')as f:
        #     f_csv = csv.writer(f)
        msg = ''
        for j in range(N):  # foreach a batch
            if logist_clean[j] == classes[j]:
                blocks, alpha, angle = nsgaii.get_init()
                # x_j = "/home/frankfeng/researchData/code/adversarial_training_code/PLP/fast_adv/attacks/test/0.1504072755143_org.png"
                # x_j = Image.open(x_j)
                # x_j =transforms.ToTensor()(x_j).to(device)
                # x_j = PyTorchTensor(x_j)
                # print("x_j", x[j].raw.shape, x_j.shape)
                attack_success_population = nsgaii.nsgaii(
                    model, x[j], classes[j], wm_tensor[j], blocks, alpha,
                    angle, self.waterMark, filenames[j])
                # print("attack_success_population", attack_success_population)

                # (alpha[single_population],
                # angle[single_population],
                # logist_population[single_population],
                # l2_population[single_population],
                # x_adv_population[single_population]))
                #
                if len(attack_success_population) > 0:
                    one_batch_attack_success += 1
                # plt.figure()
                if self.need_show_img:
                    adv_dir = nsgaii.watermark_dir
                    if not os.path.exists(adv_dir):
                        os.makedirs(adv_dir)
                    timestamp = str(int(time.time() * 1000))
                    for index in range(len(attack_success_population)):
                        if index > 0:
                            break
                        alpha = attack_success_population[index][0]
                        angle = attack_success_population[index][1]
                        logist_population = attack_success_population[index][2]
                        l2_population = attack_success_population[index][3]

                        xxx = attack_success_population[index][4].raw.cpu(
                        ).numpy().transpose([1, 2, 0]) * 255
                        img = Image.fromarray(
                            xxx.astype('uint8')).convert('RGB')
                        img = img.resize((500, 500), Image.ANTIALIAS)
                        img.save(adv_dir + '/' + filenames[j])
                        # img.save(adv_dir+'/'+timestamp+"_org" + str(j) + "_" + str(index) + "_logist"+str(logist_population)+"_l2="+str(l2_population)+".png")
                        msg += timestamp + "_filename_" + filenames[
                            j] + "_logist" + str(
                                logist_population) + "_l2=" + str(
                                    l2_population) + "\n"
                        # if index == 0:
                        #     img_org = x[j].raw.cpu().numpy().transpose([1, 2, 0]) * 255
                        #     img_org = Image.fromarray(img_org.astype('uint8')).convert('RGB')
                        #     img_org = img_org.resize((500, 500), Image.ANTIALIAS)
                        #     img_org.save(adv_dir+'/'+timestamp+"_org" + str(j) + "_" + str(index) +"_class"+str(classes[j].raw.cpu().numpy()) + ".png")
            else:
                blocks, alpha, angle = nsgaii.get_init()
                attack_success_population = nsgaii.nsgaii(
                    model, x[j], logist_clean[j], wm_tensor[j], blocks, alpha,
                    angle, self.waterMark, filenames[j])
                # print("attack_success_population", attack_success_population)

                # (alpha[single_population],
                # angle[single_population],
                # logist_population[single_population],
                # l2_population[single_population],
                # x_adv_population[single_population]))
                #
                if len(attack_success_population) > 0:
                    one_batch_attack_success += 1
                # plt.figure()
                if self.need_show_img:
                    adv_dir = nsgaii.watermark_dir
                    if not os.path.exists(adv_dir):
                        os.makedirs(adv_dir)
                    timestamp = str(int(time.time() * 1000))
                    for index in range(len(attack_success_population)):
                        if index > 0:
                            break
                        alpha = attack_success_population[index][0]
                        angle = attack_success_population[index][1]
                        logist_population = attack_success_population[index][2]
                        l2_population = attack_success_population[index][3]

                        xxx = attack_success_population[index][4].raw.cpu(
                        ).numpy().transpose([1, 2, 0]) * 255
                        img = Image.fromarray(
                            xxx.astype('uint8')).convert('RGB')
                        img = img.resize((500, 500), Image.ANTIALIAS)
                        # img.save(adv_dir + '/' + timestamp + "_org" + str(j) + "_" + str(index) + "_logist" + str(
                        #     logist_population) + "_l2=" + str(l2_population) + ".png")
                        img.save(adv_dir + '/' + filenames[j])
                        msg += timestamp + "_filename_" + filenames[
                            j] + "_logist" + str(
                                logist_population) + "_l2=" + str(
                                    l2_population) + " pred error\n"
                        # if index == 0:
                        #     img_org = x[j].raw.cpu().numpy().transpose([1, 2, 0]) * 255
                        #     img_org = Image.fromarray(img_org.astype('uint8')).convert('RGB')
                        #     img_org = img_org.resize((500, 500), Image.ANTIALIAS)
                        #     img_org.save(
                        #         adv_dir + '/' + timestamp + "_org" + str(j) + "_" + str(index) + "_class" + str(
                        #             logist_clean[j].raw.cpu().numpy()) + ".png")
        return one_batch_attack_success, msg