Esempio n. 1
0
def sample_attack(keras_model,
                  image,
                  attack_method,
                  input_name,
                  labeled,
                  target=0):
    """
     对于给定的模型和输入,本方法将使用指定的攻击方法生成攻击图片
    :return:
    """
    input_shape = nm.extract_input_shape(keras_model)[1:]
    image = nm.prepare_image(image, input_shape)
    layer_input = [image]
    label = keras_model.predict(np.asarray(layer_input))
    label = np.argmax(label)
    if labeled is not None and not label == labeled:
        return None, "This image cannot be correctly classified, no adversarial sample will be generated. expected: " + str(
            labeled) + " actual: " + str(label)
    network_model = KerasModel(keras_model, bounds=(0, 1))

    # run the attack
    if str(attack_method).lower() == 'lbfgs':
        attack = LBFGSAttack(model=network_model,
                             criterion=TargetClassProbability(target, p=.5))
    elif str(attack_method).lower() == 'singlepixelattack':
        attack = SinglePixelAttack(model=network_model,
                                   criterion=TargetClassProbability(target,
                                                                    p=.5))
    else:
        return "Attack method not supported at the moment"
    print(label)
    if label == target:
        target = (target + 1) % 10
    adversarial = attack(image[:, :, ::-1], label)
    output = network_model.predictions(adversarial)
    print(np.argmax(output))
    adversarial = adversarial.reshape(input_shape)
    adversarial = adversarial * 255
    adv_image_name = 'adv_{}_origin_{}_{}_{}'.format(target, label,
                                                     attack_method, input_name)
    print(adversarial.shape)
    im = None
    if len(adversarial.shape) == 2:
        im = Image.fromarray(np.uint8(adversarial), mode="1")
    if len(adversarial.shape) == 3 and adversarial.shape[2] == 1:
        im = Image.fromarray(np.uint8(
            adversarial.reshape(adversarial.shape[0], adversarial.shape[1])),
                             mode="L")
    if len(adversarial.shape) == 3 and adversarial.shape[2] == 3:
        im = Image.fromarray(np.uint8(adversarial), mode="RGB")
    im.save(os.path.join(basedir, Config.UPLOAD_IMAGE_FOLDER, adv_image_name))
    # cv2.imwrite(os.path.join(basedir, Config.UPLOAD_IMAGE_FOLDER, adv_image_name), adversarial)
    print('adv', adv_image_name)
    return adversarial, adv_image_name
Esempio n. 2
0
preprocessing = (np.array([104, 116, 123]), 1)
fmodel = KerasModel(kmodel, bounds=(0, 255))
attack = LBFGSAttack(model=fmodel, criterion=Misclassification())


adversarial_imgs = []
adversarial_labels =[]
# adversarial_imgs = np.asarray(adversarial_imgs)
# adversarial_labels = np.asarray(adversarial_labels)
# print(type(adversarial_imgs))
img_temp = np.load('./mnist_pure/x_train.npy')
# print(img_temp.shape)
img_temp = np.asarray(img_temp, dtype=np.float32)
# print(img_temp[0].shape)
label_temp = np.load('./mnist_pure/y_train.npy')
label_temp= np.asarray(label_temp, dtype=np.float32)

for i in range(0,60000):
    adversarial = attack(img_temp[i], label_temp[i])
    adversarial_imgs.append(adversarial)
    adv_labels = np.argmax(fmodel.predictions(adversarial))
    adversarial_labels.append(adv_labels)
    print(np.array(adversarial_imgs).shape, np.array(adversarial_labels).shape, 'Actual Label: {}, Adversarial Label: {}'.format(label_temp[i], adv_labels))


adversarial_imgs = np.asarray(adversarial_imgs)
adversarial_labels = np.asarray(adversarial_labels)

np.save('./adv_imgs_train.npy', adversarial_imgs)
np.save('./adv_labels.npy',adversarial_labels)
Esempio n. 3
0
iteration_size = 1000
global_iterations = 0
# Run boundary attack to generate an adversarial example
adversarial = attack(cat_img,
                     label=cat_label,
                     unpack=False,
                     iterations=iteration_size,
                     starting_point=dog_img,
                     log_every_n_steps=10,
                     verbose=True)
global_iterations += iteration_size

np.save('adversarial_image_{0}'.format(global_iterations), adversarial.image)

for i in range(10):
    adversarial = attack(adversarial,
                         unpack=False,
                         iterations=iteration_size,
                         verbose=True)
    global_iterations += iteration_size
    np.save('adversarial_image_{0}'.format(global_iterations),
            adversarial.image)

    # show results
    print(np.argmax(fmodel.predictions(adversarial.image)))
    print(
        fmodel.predictions(foolbox.utils.softmax(
            adversarial.image))[dog_label])
    preds = kmodel.predict(adversarial.image.copy())
    print("Top 5 predictions (adversarial: ", decode_predictions(preds, top=5))
Esempio n. 4
0
    test = image.copy()
    preds = kmodel.predict(preprocess_input(np.expand_dims(test, 0)))
    label = np.argmax(preds)
    #print("Top 3 predictions (regular: ", decode_predictions(preds, top=3))

    # run the attack
    print "running the attack"
    attack = MIM(model=fmodel, criterion=Misclassification())
    adversarial = attack(image[:, :, ::-1], label)

    if adversarial is None:
        print "Did not find an adversarial"
        continue
    # show results
    print(foolbox.utils.softmax(fmodel.predictions(adversarial))[781])
    adversarial_rgb = adversarial[np.newaxis, :, :, ::-1]
    preds = kmodel.predict(preprocess_input(adversarial_rgb.copy()))
    adv_label = np.argmax(preds)
    if adv_label != label:
        success += 1
    #print("Top 5 predictions (adversarial: ", decode_predictions(preds, top=5))

    diff = (adversarial_rgb[0] - image)

    # normalize to 0-1 for viewing with matplotlib
    a = adversarial_rgb[0].copy()
    nx = (a-np.min(a))/(np.max(a)-np.min(a))
    nd = (diff-np.min(diff))/(np.max(diff)-np.min(diff))

    max_norm = np.max(np.abs(diff))
    def main():

        # Load Keras model
        model = load_model(r'...........................h5')  #First model

        # Switch softmax with linear activations -- per evitare il softmax

        Ptype =  'probabilities' #'logits' # 'probabilities'


        # 64x64, 2 digits
        img_rows, img_cols, img_chans = 128,128, 1
        input_shape = (img_rows, img_cols, img_chans)
        num_classes = 2

        jpeg_quality = 85
        jpeg = 0 # 'true'
        compressJPEG =  0 #'true'

        #---------------------------------------------------------
        #  Load test data and define labels (numImg, 64,64)
        #-----------------------------------------------------------

        images = glob(r'...................\*.png')   #images from first model (Manipulated class)
        label = 0   # label = 1 for Original  and Label = 0 for Manipulated class

        # mismatch model: Load Keras model
        model2 = load_model(r'...................h5')  #load second model
        label2 = 1


        # We compute accuracy based on numebr of images ( 5 ) #Ehsan
        numImg = len(images)

        np.random.seed(1234)
        index = np.random.randint(len(images), size=numImg)

        x_test = np.zeros((numImg, img_rows, img_cols))
        for i in np.arange(numImg):
            img = imread(images[index[i]], flatten=False)  # Flatten=True means convert to gray on the fly
            if compressJPEG:
                img1 = Image.fromarray(img)
                img1.save('temp.jpeg', "JPEG", quality=jpeg_quality)
                img = Image.open('temp.jpeg')
            x_test[i] = img

        # Labels of authentic images = 1 (non-authentic = 0).
        y_test_c = np.tile(label, numImg)


        # Convert labels to one-hot with Keras
        y_test = keras.utils.to_categorical(y_test_c, num_classes)

        # Reshape test data, divide by 255 because net was trained this way
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, img_chans)

        x_test = x_test.astype('float32')
        x_test /= 255

        # Test legitimate examples
        score = model.evaluate(x_test, y_test, verbose=0)
        #Returns the loss value (of the loss function) & metrics (accuracy ...) values for the model in test mode
        predicted_legitimate_labels = np.argmax(model.predict(x_test), axis=1)

        print('Accuracy on legitimate images (all): {:3.4f}'.format(score[1]))

        y_test_c2 = np.tile(label2, numImg)
        y_test2 = keras.utils.to_categorical(y_test_c2, num_classes)
        #one-hot representation
        score2 = model2.evaluate(x_test, y_test2, verbose=0)
        # Returns the loss value (of the loss function) & metrics (accuracy ...) values for the model in test mode
        #predicted_legitimate_labels2 = np.argmax(model2.predict(x_test), axis=1)
        print('Accuracy on legitimate images (all) by mismatched model: {:3.4f}'.format(score2[1]))

        # ----------------------------------------------------------------------------------------------------------------------
        # Attack the first image of the test set
        # ----------------------------------------------------------------------------------------------------------------------

        # Wrap model
        fmodel = KerasModel(model, bounds=(0, 1), predicts=Ptype)

        # Prepare attack
        #attack = foolbox.attacks.FGSM(fmodel)
        #attack = foolbox.attacks.DeepFoolAttack(fmodel)
        #attack = foolbox.attacks.DeepFoolAttack(fmodel)
        #attack = foolbox.attacks.SaliencyMapAttack(fmodel,threshold=PSNR2MSE(55))
        #attack = foolbox.attacks.LBFGSAttack(fmodel)
        attack = foolbox.attacks.LBFGSAttack(fmodel, threshold=PSNR2MSE(55))  #LBFGS adversarial attack with limit PSNR


        # ------Get data, labels and categorical labels ***only for correctly classified examples***
        l = np.argwhere(predicted_legitimate_labels == y_test_c).shape[0]

        x_test_ok = np.reshape(x_test[np.array(np.argwhere(predicted_legitimate_labels == y_test_c)), :, :, :], (l, img_rows,
                                                                                                                 img_cols,
                                                                                                                img_chans))
        test_ok_index = index[np.array(np.argwhere(predicted_legitimate_labels == y_test_c))]

        # x_test_ok are the images that are correctly classified by the first model since we do not want to attack misclassified images

        y_test_ok = np.reshape(y_test[np.argwhere(predicted_legitimate_labels == y_test_c), :], (l, num_classes))
        y_test_c_ok = np.argmax(y_test_ok, axis=1)


        y_test_c_ok_2 = np.tile(label2, l)
        y_test_ok_2 = keras.utils.to_categorical(y_test_c_ok_2, num_classes)
        score3 = model2.evaluate(x_test_ok, y_test_ok_2, verbose=0)
        predicted_legitimate_labels2 = np.argmax(model2.predict(x_test_ok), axis=1)

        l = np.argwhere(predicted_legitimate_labels2 == y_test_c_ok_2).shape[0]
        x_test_ok = np.reshape(x_test_ok[np.array(np.argwhere(predicted_legitimate_labels2 == y_test_c_ok_2)), :, :, :],
                               (l, img_rows,
                                img_cols,
                                img_chans))
        y_test_ok = np.reshape(y_test_ok[np.argwhere(predicted_legitimate_labels2 == y_test_c_ok_2), :],
                               (l, num_classes))
        y_test_c_ok = np.argmax(y_test_ok, axis=1)

        test_ok_index = np.squeeze(test_ok_index[np.array(np.argwhere(predicted_legitimate_labels2 == y_test_c_ok_2))])

        # ------------------


        # Elaborate n_test adversarial examples ***only for correctly classified examples***
        n_test = l  #Benedetta

        #n_test = l    #Ehsan : You're the man Ehsan

        S = 0
        S_int = 0
        S_jpg  = 0
        avg_Max_dist = 0
        avg_L1_dist = 0
        avg_Max_dist_made_integer = 0
        avg_L1_dist_made_integer = 0
        avg_No_Mod_Pixels = 0
        avg_No_Mod_Pixels_integer_rounding_adv_img = 0
        avg_No_Mod_Pixels_integer_NO_rounding = 0
        PSNR = 0
        t = 0
        avg_psnr = 0
        avg_psnr_int = 0
        psnr_org=0 #for each image
        psnr_Int=0 #for each image
        max_diff_integer=0
        max_diff=0


        adv_images = np.zeros((n_test, img_rows, img_cols, img_chans))
        adv_images_integer = np.zeros((n_test, img_rows, img_cols, img_chans))
        true_labels_cat = []
        for idx in np.arange(n_test):
            #n_test should be less than to the length of x_test_ok
            image = x_test_ok[idx]

            true_labels_cat.append(y_test_ok[idx, :])

            image = image.astype('float32')
            image_original = 255 * image.reshape((img_rows, img_cols))

            if compressJPEG:
                img1 = Image.fromarray(np.uint8(255*image[:,:,0]))
                img1.save('temp.jpeg', "JPEG", quality=jpeg_quality)
                img_reread = Image.open('temp.jpeg')
                image = np.array(img_reread)
                image = np.reshape(image, (img_rows, img_cols, img_chans))


            # Generate adversarial images
            adv_images[idx] = attack(image, y_test_c_ok[idx])

            adversarial_image = 255 * adv_images[idx].reshape((img_rows, img_cols))

            Z = np.uint8(np.round(adversarial_image))

            # Store adversarial integer images
            ##############################################################################

            path1='E:/......................./' #output folder


            cv2.imwrite(os.path.join(path1, os.path.basename(images[test_ok_index[idx]])), Z)

            ##################################################################################
            path2 = '''E:\..................\\'''
            diff_noise=adversarial_image - image_original
            Noise = np.uint8((diff_noise - np.min(diff_noise)) / (np.max(diff_noise) - np.min(diff_noise)))
            cv2.imwrite(path2 + 'adv_Nosie_%d.png' % idx, 255*Noise)
            adv_images_integer[idx] = np.reshape(Z / 255., (img_rows, img_cols, 1))


            # Scores of legitimate and adversarial images for each idx
            scoreTemp = fmodel.predictions(image)
            true_score = foolbox.utils.softmax(scoreTemp)
            true_class = np.argmax(true_score)
            #it is the ground truth true_class according to network 1
            adv_score = foolbox.utils.softmax(fmodel.predictions(adv_images[idx]))
            adv_class = np.argmax(adv_score)
            adv_integer_score = foolbox.utils.softmax(fmodel.predictions(adv_images_integer[idx]))
            adv_integer_class = np.argmax(adv_integer_score)



            print('Image {}. Class changed from {} to {}. The score passes from {} to {}'.format(idx, true_class,
                                                                                                 adv_class, true_score,
                                                                                                 adv_score))

            print('Image Made Integer {}. Class changed from {} to {}. The score passes from {} to {}'.format(idx, true_class,
                                                                                                 adv_integer_class, true_score,
                                                                                                 adv_integer_score))

            # the if below is to solve the strange problem with the prediction of a matrix of nan values...
            if np.any(np.isnan(adv_images[idx])):
                adv_class = true_class
                adv_integer_class = true_class
                t = t + 1
                print('An adversarial image cannot be found!!')


            if true_class == adv_class:
                S = S+1
            if true_class == adv_integer_class:
                S_int = S_int + 1

            # plot image, adv_image and difference
            image_before = 255 * image.reshape((img_rows, img_cols))
            X = np.uint8(image_before) # uint8 non ha effetto di troncamento



            diff = np.double(image_before) - np.double(adversarial_image)

            print('Max distortion adversarial = {:3.4f}; L1 distortion = {:3.4f}'.format(abs(diff).max(),
                                                                                                 abs(diff).sum() / (
                                                                                                             img_rows * img_cols)))
            print('Percentage of modified pixels on integers = {:3.4f}. Percentage of negative modifications  = {:3.4f}'.format(np.count_nonzero(diff)/(img_rows * img_cols), np.count_nonzero(np.double(abs(diff)) - np.double(diff))/(img_rows * img_cols)))


            diff_integer = np.double(X) - np.double(Z)

            max_diff_integer = diff_integer.max()
            max_diff = diff.max()


            path3 = '''E:\Benedetta_for_ICASSP\IMAGE_Diff_Int\\'''
            Noise2 = np.uint8((diff_integer - np.min(diff_integer)) / (np.max(diff_integer) - np.min(diff_integer)))
            cv2.imwrite(path3 + 'adv_Nosie_%d.png' % idx, 255 * Noise2)



            print('Max distortion adversarial integer = {:3.4f}; L1 distortion = {:3.4f}'.format(abs(diff_integer).max(), abs(diff_integer).sum()/(img_rows * img_cols)))

            #show_figures(X,Z,true_score,adv_score)   #Ehsan: Compute PSNR for each Images org and Adversarial integer
            psnr_org=psnr(image_before, adversarial_image)
            print('PSNR = {:3.4f}'.format(abs(psnr_org)))

            psnr_Int = psnr(X, Z)
            print('PSNR (Integer) = {:3.4f}'.format(abs(psnr_Int)))


            # update average distortion
            if true_class != adv_class:
              avg_Max_dist = avg_Max_dist + abs(diff).max()
              avg_L1_dist = avg_L1_dist + abs(diff).sum()/(img_rows * img_cols)
              avg_No_Mod_Pixels = avg_No_Mod_Pixels + np.count_nonzero(diff) / (img_rows * img_cols)
              avg_psnr = avg_psnr + psnr(image_before, adversarial_image)


            if true_class != adv_integer_class:
              avg_Max_dist_made_integer = avg_Max_dist_made_integer + abs(diff_integer).max()
              avg_L1_dist_made_integer = avg_L1_dist_made_integer + abs(diff_integer).sum()/(img_rows * img_cols)
              avg_No_Mod_Pixels_integer_rounding_adv_img = avg_No_Mod_Pixels_integer_rounding_adv_img + np.count_nonzero(diff_integer) / (img_rows * img_cols)  # ????????? why diff ????
              #this after rounding to integer the adversarial image
              avg_No_Mod_Pixels_integer_NO_rounding = avg_No_Mod_Pixels_integer_NO_rounding + np.count_nonzero(diff) / (img_rows * img_cols)
              #this is just without rounding but counting the difference when the true class and the modified class are different
              avg_psnr_int = avg_psnr_int + psnr(X, Z)

            # -------------------------------
            # #Compress JPEG the image and test again
            # -------------------------------

            if jpeg:

                img1 = Image.fromarray(Z)
                img1.save('temp.jpeg', "JPEG", quality= jpeg_quality)
                adv_reread = Image.open('temp.jpeg')
                x_test_comp = np.array(adv_reread)
                x_test_comp = x_test_comp.reshape(img_rows, img_cols, img_chans)
                x_test_comp = x_test_comp.astype('float32')
                x_test_comp /= 255
                adv_reread_score = foolbox.utils.softmax(fmodel.predictions(x_test_comp))
                adv_reread_class = np.argmax(adv_reread_score)
                if true_class == adv_reread_class:
                    S_jpg = S_jpg + 1
                print('Class after JPEG compression {}, with score {}.'.format(adv_reread_class,adv_reread_score))

                x_test_comp = 255* x_test_comp.reshape((img_rows, img_cols))
                print('PSNR = {}'.format(psnr(image_before, x_test_comp)))

                PSNR = psnr(image_before, x_test_comp) + PSNR


        n=n_test-S
        n_int=n_test-S_int
        print('Class for the adversarial unchanged: {} over {}'.format(S,n_test))
        # on how many test images (advesarial) the attack did not work
        print('Class for the adversarial integer unchanged: {} over {}'.format(S_int,n_test))
        # on how many test images (advesarial) integer the attack did not work
        print('Average distortion: max dist {}, L1 dist {}'.format(avg_Max_dist/n,avg_L1_dist/n))
        print('Average distortion (made integer): max dist {}, L1 dist {}'.format(avg_Max_dist_made_integer/n_int,avg_L1_dist_made_integer/n_int))
        print('Average no of modified pixels: {}'.format(avg_No_Mod_Pixels/n))
        print('Average no of modified pixels on integers NO ROUNDING: {}'.format(avg_No_Mod_Pixels_integer_NO_rounding /n_int))
        print('Average no of modified pixels on integers rounding adv_img to int: {}'.format(avg_No_Mod_Pixels_integer_rounding_adv_img / n_int))


        print('The adversarial image cannot be found  {} times over {}'.format(t,n_test))


        if jpeg:
           print('Percentage of adversarial JPEG unchanged with QF {} (the attack is not successful): {}'.format(jpeg_quality, S_jpg/n_test))

        print('Average PSNR distortion for JPEG adversarial images : {}'.format(PSNR/n_test))

        # Evaluate accuracy
        true_labels_cat = np.array(true_labels_cat)
        adv_score = model.evaluate(adv_images, true_labels_cat, verbose=0)
        adv_score_integer= model.evaluate(adv_images_integer, true_labels_cat, verbose=0)

        score_perfect = model.evaluate(x_test_ok, y_test_ok, verbose=0)

        print('Accuracy on legitimate images (all) by N1: {:3.4f}'.format(score[1]))
        print('Accuracy on legitimate images (all) by mismatched model N2: {:3.4f}'.format(score2[1]))  # ????? Score2
        print('Accuracy on legitimate images (only correctly classified, obviously 1) N1: {:3.4f}'.format(score_perfect[1]))
        print('Accuracy on adversarial images N1: {:3.4f}'.format(adv_score[1]))
        print('Attack success rate on adversarial images N1: {:3.4f}'.format(1-adv_score[1]))
        print('Accuracy on adversarial images (made integer) N1: {:3.4f}'.format(adv_score_integer[1]))
        print('Attack success on adversarial images (made integer) N1: {:3.4f}'.format(1-adv_score_integer[1]))
        print('Average PSNR =: {:3.4f}'.format(avg_psnr / n))
        print('Average PSNR (Integer) =: {:3.4f}'.format(avg_psnr_int / n_int))

        # SECOND PART
        # Load the second model and test the adversarial images
        # Label
        #label3 = np.abs(1 - label2)  # it may be different from label because of the differences in the model.

        # Labels
        y_test_c = np.tile(label2, n_test)

        # Convert labels to one-hot with Keras
        y_test2 = keras.utils.to_categorical(y_test_c, num_classes)

        # Test
        adv_score_mismatch = model2.evaluate(adv_images, y_test2, verbose=0)

        # here Ehsan we need to evaluate model 2 in the same way but not on adv_images ... on adv_images_integer

        adv_score_mismatch_on_integer = model2.evaluate(adv_images_integer, y_test2, verbose=0)



        print('Accuracy on adversarial images with the mismatched model N2: {:3.4f}'.format(adv_score_mismatch[1]))
        print('Attack success rate on adversarial images with the mismatched model N2: {:3.4f}'.format(1-adv_score_mismatch[1]))

        print('Accuracy on adversarial images with the mismatched model (Integer) N2: {:3.4f}'.format(adv_score_mismatch_on_integer[1]))
        print('Attack success rate on adversarial images with the mismatched model (Integer) N2: {:3.4f}'.format(1-adv_score_mismatch_on_integer[1]))
Esempio n. 6
0
def save_adv_image(adversarial, global_iterations):
    save_image_name = 'adversarial_image_{0}_steps_{1}_calls.jpg'.format(
        global_iterations, adversarial._total_prediction_calls)
    adv_image = (adversarial.image + 1) * 255 / 2
    adv_image = adv_image.astype(np.uint8)
    adv_image_pil = Image.fromarray(adv_image)
    adv_image_pil.save(save_image_name)
    return


save_adv_image(adversarial, global_iterations)
# np.save('adversarial_image_{0}'.format(global_iterations), adversarial.image)

for i in range(5):
    adversarial = attack(adversarial,
                         unpack=False,
                         iterations=iteration_size,
                         log_every_n_steps=10,
                         verbose=True)
    global_iterations += iteration_size
    save_adv_image(adversarial, global_iterations)
    # np.save('adversarial_image_{0}'.format(global_iterations), adversarial.image)

    # show results
    print(np.argmax(fmodel.predictions(adversarial.image)))
    preds = kmodel.predict(np.expand_dims(adversarial.image.copy(), 0))
    print("Top 5 predictions (adversarial: ", decode_predictions(preds, top=5))
    print("make {0} model calls so far".format(
        adversarial._total_prediction_calls))
Esempio n. 7
0
    def main():

        # Load Keras model
        model = load_model(
            r'.................................................h5')

        Ptype = 'probabilities'  # (default) with the softmax
        # # Switch softmax with linear activations -- to avoid the softmax
        #model = force_linear_activation(model=model, savemodel=None)
        #Ptype = 'logits'

        compressJPEG = 0  #'true'
        jpeg = 0
        jpeg_quality = 85

        # size (no color images)
        img_rows, img_cols, img_chans = 64, 64, 1
        num_classes = 2

        #---------------------------------------------------------
        #  Load test data, define labels, test the model
        #-----------------------------------------------------------

        images = glob(r'F:..................................\*.png')

        label = 1  # label = 0 for Manipulated, 1 for Original ------ for StammNets, it is the reverse ! (0 for Original)

        #number of imagess for testing the model
        #numImg = len(images) # <= len(images)

        numImg = 100

        #np.random.seed(1234)
        #index = np.random.randint(len(images), size=numImg)
        index = np.arange(numImg)

        x_test = np.zeros((numImg, img_rows, img_cols))
        for i in np.arange(numImg):
            img = imread(images[
                index[i]])  # Flatten=True means convert to gray on the fly
            if compressJPEG:
                img1 = Image.fromarray(img)
                img1.save('temp.jpeg', "JPEG", quality=jpeg_quality)
                img = Image.open('temp.jpeg')
            x_test[i] = img

        # Labels
        y_test_c = np.tile(label, numImg)

        # Convert labels to one-hot with Keras
        y_test = keras.utils.to_categorical(y_test_c, num_classes)

        # Reshape test data, divide by 255 because net was trained this way
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, img_chans)

        x_test = x_test.astype('float32')
        x_test /= 255

        # Test legitimate examples
        score = model.evaluate(x_test, y_test, verbose=0)
        predicted_legitimate_labels = np.argmax(model.predict(x_test), axis=1)
        print('Accuracy on legitimate images (all): {:3.4f}'.format(score[1]))

        # ----------------------------------------------------------------------------------------------------------------------
        # Attack the [correctly classified] images in the test set
        # ----------------------------------------------------------------------------------------------------------------------

        # Wrap model
        fmodel = KerasModel(model, bounds=(0, 1), predicts=Ptype)
        #KK: KerasModel Creates a Model instance from a Keras model.

        # Prepare attack
        #attack = foolbox.attacks.IterativeGradientSignAttack(fmodel)
        #######attack = foolbox.attacks.DeepFoolAttack(fmodel)
        attack = foolbox.attacks.SaliencyMapAttack(fmodel)

        #attack = foolbox.attacks.BIM(fmodel)

        #attack = foolbox.attacks.LBFGSAttack(fmodel)

        # ------Get data, labels and categorical labels ***only for correctly classified examples***
        l = np.argwhere(predicted_legitimate_labels == y_test_c).shape[0]
        #this is the number of legitimate images correctly classified
        x_test_ok = np.reshape(
            x_test[
                np.array(np.argwhere(
                    predicted_legitimate_labels == y_test_c)), :, :, :],
            (l, img_rows, img_cols, img_chans))
        #put the correctly classified images in a Numpy array x_test_ok
        y_test_ok = np.reshape(
            y_test[np.argwhere(predicted_legitimate_labels == y_test_c), :],
            (l, num_classes))
        y_test_c_ok = np.argmax(y_test_ok, axis=1)

        # ------------------

        # Elaborate n_test adversarial examples ***only for correctly classified examples*** (at most l)
        n_test = l  #150 # it must be lower than l
        #how many many images out of the correctly classified you want to try to attack!

        S = 0
        S_jpg = 0
        avg_Max_dist = 0
        avg_L1_dist = 0
        avg_No_Mod_Pixels = 0
        t = 0
        avg_psnr = 0
        PSNR = 0
        psnr_org = 0

        adv_images = np.zeros((n_test, img_rows, img_cols, img_chans))
        true_labels_cat = []
        for idx in np.arange(n_test):
            image = x_test_ok[idx]

            true_labels_cat.append(y_test_ok[idx, :])

            image = image.astype('float32')

            if compressJPEG:
                img1 = Image.fromarray(np.uint8(255 * image[:, :, 0]))
                img1.save('temp.jpeg', "JPEG", quality=jpeg_quality)
                img_reread = Image.open('temp.jpeg')
                image = np.array(img_reread)
                image = np.reshape(image, (img_rows, img_cols, img_chans))

            # Generate adversarial images
            adv_images[idx] = attack(image, y_test_c_ok[idx])

            adversarial_image = 255 * adv_images[idx].reshape(
                (img_rows, img_cols))

            #######################################
            #np.save('.................................' % idx,adversarial_image)
            #path_adv_Image = '..................................'
            #adversarial = adversarial_image
            #cv2.imwrite(path_adv_Image + 'adv_%d.png' % idx, adversarial)

            # Scores of legitimate and adversarial images for each idx
            scoreTemp = fmodel.predictions(image)
            true_score = foolbox.utils.softmax(scoreTemp)
            true_class = np.argmax(true_score)
            adv_score = foolbox.utils.softmax(
                fmodel.predictions(adv_images[idx]))
            adv_class = np.argmax(adv_score)

            print(
                'Image {}. Class changed from {} to {}. The score passes from {} to {}'
                .format(idx, true_class, adv_class, true_score, adv_score))
            '''print('After rounding. Class changed from {} to {}. The score passes from {} to {}'.format(idx, true_class,
                                                                                                 Z_class, true_score,
                                                                                                 Z_score))
																								'''

            # the if below is to solve the strange problem with the prediction of a matrix of nan values...
            if np.any(np.isnan(adv_images[idx])):
                adv_class = true_class  #attack not successful
                t = t + 1
                print('An adversarial image cannot be found!!')

            if true_class == adv_class:
                S = S + 1

            # plot image, adv_image and difference
            #Measure the distortion between the original image and attacked image
            image_before = 255 * image.reshape((img_rows, img_cols))
            diff = np.double(image_before) - np.double(adversarial_image)
            #diff = np.double(image_before) - np.double(Z)
            print(
                'Max distortion adversarial [After Rounding] = {:3.4f}; L1 distortion = {:3.4f}'
                .format(
                    abs(diff).max(),
                    abs(diff).sum() / (img_rows * img_cols)))
            print('Percentage of modified pixels [After Rounding]  = {:3.4f}'.
                  format(np.count_nonzero(diff) / (img_rows * img_cols)))

            psnr_org = psnr(image_before, adversarial_image)
            print('PSNR = {:3.4f}'.format(abs(psnr_org)))

            X = np.uint8(image_before)
            #Z = np.uint8(np.round(adversarial_image))  # Omit This Line Code
            #show_figures(X,Z,true_score,Z_score)

            # to save the result of the attack, save the Z matrix.......
            #Z.save(...)

            # update average distortion
            if true_class != adv_class:
                avg_Max_dist = avg_Max_dist + abs(diff).max()
                avg_L1_dist = avg_L1_dist + abs(diff).sum() / (img_rows *
                                                               img_cols)
                avg_No_Mod_Pixels = avg_No_Mod_Pixels + np.count_nonzero(
                    diff) / (img_rows * img_cols)
                avg_psnr = avg_psnr + psnr(image_before, adversarial_image)

            # -------------------------------
            # #Compress JPEG the image and test again
            # -------------------------------
            '''if jpeg:
                #cv2.imwrite('tmp.jpg', Z[::-1], [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality])
                #adv_reread = imread('tmp.jpg')
                img1 = Image.fromarray(Z)
                img1.save('temp.jpeg', "JPEG", quality= jpeg_quality)
                adv_reread = Image.open('temp.jpeg')
                x_test_comp = np.array(adv_reread)
                x_test_comp = x_test_comp.reshape(img_rows, img_cols, img_chans)
                x_test_comp = x_test_comp.astype('float32')
                x_test_comp /= 255
                adv_reread_score = foolbox.utils.softmax(fmodel.predictions(x_test_comp))
                adv_reread_class = np.argmax(adv_reread_score)
                if true_class == adv_reread_class:
                    S_jpg = S_jpg + 1
                print('Class after JPEG compression {}, with score {}.'.format(adv_reread_class,adv_reread_score))

                x_test_comp = 255* x_test_comp.reshape((img_rows, img_cols))
			'''

        n = n_test - S
        print('Adversarial failures: {} over {}'.format(S, n_test))
        print('Average distortion: max dist {}, L1 dist {}'.format(
            avg_Max_dist / n, avg_L1_dist / n))
        print('Average no of modified pixels: {}'.format(avg_No_Mod_Pixels /
                                                         n))
        print('The adversarial image cannot be found  {} times over {}'.format(
            t, n_test))

        if jpeg:
            print(
                'Percentage of adversarial JPEG unchanged with QF {} (the attack is not successful): {}'
                .format(jpeg_quality, S_jpg / n_test))

        # Evaluate accuracy
        true_labels_cat = np.array(true_labels_cat)
        adv_score = model.evaluate(adv_images, true_labels_cat, verbose=0)
        #Z_score = model.evaluate(Z, true_labels_cat, verbose=0)

        score_perfect = model.evaluate(x_test_ok, y_test_ok, verbose=0)

        print('Accuracy on legitimate images (all): {:3.4f}'.format(score[1]))
        print(
            'Accuracy on legitimate images (only correctly classified, obviously 1): {:3.4f}'
            .format(score_perfect[1]))
        print('Accuracy on adversarial images: {:3.4f}'.format(adv_score[1]))
        print('Attack success rate on adversarial images N1: {:3.4f}'.format(
            1 - adv_score[1]))
        print('Average PSNR =: {:3.4f}'.format(avg_psnr / n))
        #print('Accuracy on legitimate images (all) by mismatched model: {:3.4f}'.format(score2[1]))

        # SECOND PART
        # Load the second model and test the adversarial images

        # Label
        label3 = 1  # it may be different from label because of the differences in the model.

        # Labels
        y_test_c = np.tile(label3, n_test)

        # Convert labels to one-hot with Keras
        y_test2 = keras.utils.to_categorical(y_test_c, num_classes)
'SpatialAttack',
'CarliniWagnerL2Attack',
'LinfinityBasicIterativeAttack',
'BasicIterativeMethod',
'L1BasicIterativeAttack',
'L2BasicIterativeAttack',
'ProjectedGradientDescentAttack',
'ProjectedGradientDescent',
'RandomStartProjectedGradientDescentAttack',
'RandomProjectedGradientDescent',
'MomentumIterativeAttack',
'MomentumIterativeMethod']

image=cv2.imread('myTest7.JPEG')
imageS=cv2.resize(image,dsize=(224,224)).astype(np.float)
print('predicted class', np.argmax(fmodel.predictions(imageS[:,:,:])))
label=np.argmax(fmodel.predictions(imageS[:,:,:]))

for atk in attacks:
   attack=eval('foolbox.attacks.'+atk+'(fmodel, criterion=TargetClassProbability(388, p=.8))')
   adversarial = attack(imageS[:,:,:], label)
   if type(adversarial)!=np.ndarray:
      print(atk+": Targeted Class not Supported")
      attack=eval('foolbox.attacks.'+atk+'(fmodel, criterion=TopKMisclassification(2))')
      adversarial = attack(imageS[:,:,:], label)
   if type(adversarial)!=np.ndarray:
      print(atk+": Targeted Class not Supported")
      attack=eval('foolbox.attacks.'+atk+'(fmodel, criterion=ConfidentMisclassification(0.5))')
      adversarial = attack(imageS[:,:,:], label)
   if type(adversarial)==np.ndarray:
      sum(sum(adversarial[:,:,:]-imageS))