Esempio n. 1
0
def dataImputation(fname, y, rsMethodName, eval_fname):

    rsIndex = ResponseSurfaces.getEnumValue(rsMethodName)

    # write script
    f = tempfile.SpooledTemporaryFile(mode="wt")
    if platform.system() == 'Windows':
        import win32api
        fname = win32api.GetShortPathName(fname)

    f.write('load %s\n' % fname)  # load data
    cmd = 'rscreate'
    f.write('%s\n' % cmd)
    f.write('%d\n' % y)  # select output
    f.write('%d\n' % rsIndex)  # select response surface

    cmd = 'rseval'
    f.write('%s\n' % cmd)
    f.write('y\n')  # data taken from register
    f.write('%s\n' % eval_fname)
    f.write('y\n')  # do fuzzy evaluation
    f.write('y\n')  # write data to file
    f.write('quit\n')
    f.seek(0)

    # invoke psuade
    out, error = Common.invokePsuade(f)
    f.close()
    if error:
        return None

    outfile = 'eval_sample'
    assert(os.path.exists(outfile))
    return outfile
Esempio n. 2
0
File: OUU.py Progetto: pn51/FOQUS
 def run(self):
     self.functionSignal.connect(self.functionHandle)
     self.textDialogShowSignal.connect(self.textDialog.show)
     self.textDialogCloseSignal.connect(self.textDialog.close)
     self.textDialogInsertSignal.connect(self.textDialog.textedit.insertPlainText)
     self.textDialogEnsureVisibleSignal.connect(
         self.textDialog.textedit.ensureCursorVisible
     )
     self.showErrorSignal.connect(self.textDialog.showError)
     out, error = Common.invokePsuade(
         self.fileHandle,
         textDialog=self.textDialog,
         dialogShowSignal=self.textDialogShowSignal,
         dialogCloseSignal=self.textDialogCloseSignal,
         textInsertSignal=self.textDialogInsertSignal,
         ensureVisibleSignal=self.textDialogEnsureVisibleSignal,
         showErrorSignal=self.showErrorSignal,
         printOutputToScreen=True,
         plotOuuValuesSignal=self.plotValuesSignal,
     )
     if out is None:
         return
     self.fileHandle.close()
     self.functionSignal.emit(out, error)
     self.finishedSignal.emit()
Esempio n. 3
0
def rseval(rsdata, pdata, cdata, rstypes):
    # rsdata: SampleData containing the RS training data
    # pdata: SampleData containing the sample representing the prior over uncertain variables
    # cdata: SampleData containing the candidate set
    # rstypes: dictionary with output index as key and string denote RS types as value; possible values: ['MARS',
    # 'linear', 'quadratic', 'cubic']

    # convert the data into psuade files
    cfile = os.path.join(dname, 'CandidateSet')
    pfile = os.path.join(dname, 'PriorSample')
    rsfile = os.path.join(dname, 'RSTrainData')
    cfile = writeSample(cfile, cdata)
    pfile = writeSample(pfile, pdata)
    y = 1
    rsfile = RSAnalyzer.writeRSdata(rsfile, y, rsdata)

    cmd = 'odoeu_rseval'

    inputNames = rsdata.getInputNames()
    priorNames = pdata.getInputNames()
    priorIndices = []
    for name in priorNames:
        priorIndices.append(inputNames.index(name) + 1)

    rs_list = ['MARS', 'linear', 'quadratic', 'cubic', 'GP3']

    # extract the indices of RS types for outputs
    rs_idx = [ResponseSurfaces.getEnumValue(s) for s in rs_list]
    rsdict = dict(zip(rs_list, rs_idx))

    # write script
    f = tempfile.SpooledTemporaryFile(mode='wt')
    if platform.system() == 'Windows':
        import win32api
        cfile = win32api.GetShortPathName(cfile)
        pfile = win32api.GetShortPathName(pfile)
        rsfile = win32api.GetShortPathName(rsfile)
    f.write('load %s\n' % rsfile)
    f.write('%s\n' % cmd)
    f.write('y\n')
    for i in priorIndices:
        f.write(
            '%d\n' % i
        )  # specify random variables, should be consistent with vars in prior
    f.write('0\n')  # 0 to proceed
    f.write('%s\n' %
            pfile)  # file containing the prior sample (psuade sample format)
    f.write('%s\n' %
            cfile)  # file containing the candidate set (psuade sample format)
    for rs in rstypes:  # for each output, specify RS index
        f.write('%d\n' % rsdict[rstypes[rs]])
    f.write('quit\n')
    f.seek(0)

    # invoke psuade
    out, error = Common.invokePsuade(f)
    if error:
        return None

    outfile = 'odoeu_rseval.out'
    assert (os.path.exists(outfile))
    return outfile
Esempio n. 4
0
def odoeu(cdata,
          cfile,
          pdata,
          rsdata,
          rstypes,
          opt,
          nd,
          max_iters=100,
          edata=None):

    # cdata: SampleData containing the original candidate set
    # cfile: PSUADE sample file containing the original candidates with the mean/std of the selected output
    # cdata: SampleData containing the candidate set
    # pdata: SampleData containing the sample representing the prior over uncertain variables
    # rsdata: SampleData containing the RS training data
    # rstypes: dictionary with output index as key and string denote RS types as value; possible values: ['MARS',
    # 'linear', 'quadratic', 'cubic']
    # nd: int denoting design size
    # max_iters: int denoting maximum number of iterations for the optimization routine [default: 100]
    # edata: SampleData containing the evaluation set

    # parse params
    opts = ['G', 'I', 'D', 'A']
    assert (opt in opts)
    optdict = dict(zip(opts, range(1, len(opts) + 1)))
    opt_index = optdict[opt]
    cmd = 'odoeu_optns'

    # TO DO for Pedro: check in GUI?
    # maximum iterations should be in range [100, 1000]
    assert (99 < max_iters < 1001)

    # initialize constants
    ncand = cdata.getNumSamples()
    nOutputs = rsdata.getNumOutputs()

    # extract the indices of random variables
    inputNames = rsdata.getInputNames()
    priorNames = pdata.getInputNames()
    priorIndices = []
    for name in priorNames:
        priorIndices.append(inputNames.index(name) + 1)

    rs_list = ['MARS', 'linear', 'quadratic', 'cubic', 'GP3']
    # TO DO for Pedro: check in GUI?
    # this checks to see if user is trying to pass an unsupported RS
    for rs in rstypes:
        assert (rstypes[rs] in rs_list)
    assert (len(rstypes) == nOutputs)

    # extract the indices of RS types for outputs
    rs_idx = [ResponseSurfaces.getEnumValue(s) for s in rs_list]
    rsdict = dict(zip(rs_list, rs_idx))

    # convert the data into psuade files
    pfile = os.path.join(dname, 'PriorSample')
    rsfile = os.path.join(dname, 'RSTrainData')
    pfile = writeSample(pfile, pdata)
    efile = os.path.join(dname, 'EvaluationSet')
    if edata is None:
        efile = writeSample(efile, cdata)
    else:
        efile = writeSample(efile, edata)
    y = 1
    rsfile = RSAnalyzer.writeRSdata(rsfile, y, rsdata)

    # write script
    f = tempfile.SpooledTemporaryFile(mode='wt')
    if platform.system() == 'Windows':
        import win32api
        pfile = win32api.GetShortPathName(pfile)
        rsfile = win32api.GetShortPathName(rsfile)
        efile = win32api.GetShortPathName(efile)

    f.write('%s\n' % cmd)
    f.write('y\n')
    f.write('%d\n' % opt_index)  # choose G, I, D, A
    f.write('%d\n' % ncand)  # size of the candidate set
    f.write('%d\n' % nd)  # design size
    f.write(
        '%d\n' %
        max_iters)  # max number of iterations, must be greater or equal to 100
    f.write('n\n')  # no initial guess
    f.write('%s\n' %
            rsfile)  # file containing RS training data (psuade format)
    for i in priorIndices:
        f.write(
            '%d\n' % i
        )  # specify random variables, should be consistent with vars in prior
    f.write('0\n')  # 0 to proceed
    f.write('%s\n' %
            pfile)  # file containing the prior sample (psuade sample format)
    f.write('%s\n' %
            cfile)  # file containing the candidate set (psuade sample format)
    f.write('%s\n' % efile
            )  # ... evaluate the optimality values on the (same) candidate set
    for rs in rstypes:  # for each output, specify RS index
        f.write('%d\n' % rsdict[rstypes[rs]])
        # TO DO: as we add more RS, may need to port more code from RSAnalyzer.py to handle different RS types
    f.write('quit\n')
    f.seek(0)

    # invoke psuade
    out, error = Common.invokePsuade(f)
    if error:
        return None

    # parse output
    best_indices = None
    best_optval = None
    m = re.findall(cmd + r' best selection = (\d+ \d+)', out)
    if m:
        best_indices = [i for i in m[0].split()]
        s = r'\s*'.join([i for i in best_indices])
        best_optvals = re.findall(s + r'\s*===> output = (\S*)', out)

        best_indices = [int(i) for i in best_indices]
        best_optval = float(best_optvals[0])

    return best_indices, best_optval
Esempio n. 5
0
    def compress(fname):

        N = 0  # number of samples in x3sample['file']
        with open(fname) as f:  ### TO DO for Jeremy: check sample size in GUI
            header = f.readline()
            header = header.split()
            N = int(header[0])
            nInputs = int(header[1])

        Nmin = 100  # psuade minimum for genhistogram
        if N < Nmin:
            warn = 'OUU: In function compress(), "x3sample file" requires '
            warn = warn + 'at least %d samples.' % Nmin
            Common.showError(warn)
            return {N: fname}  # return original sample file

        outfiles = {}
        nbins_max = 20
        nscenarios_max = 1501
        for nbins in xrange(2, nbins_max):

            # write script to invoke scenario compression
            f = tempfile.SpooledTemporaryFile()
            if platform.system() == 'Windows':
                import win32api
                fname = win32api.GetShortPathName(fname)
            f.write('read_std %s\n' % fname)
            f.write('genhistogram\n')
            for x in xrange(nInputs):
                f.write('%d\n' % nbins)
            f.write('quit\n')
            f.seek(0)

            # invoke psuade
            out, error = Common.invokePsuade(f)
            f.close()
            if error:
                return None

            # check output file
            sfile = 'psuade_pdfhist_sample'
            if os.path.exists(sfile):
                Ns = 0  # number of samples in psuade_pdfhist_sample
                with open(sfile) as f:
                    header = f.readline()
                    header = header.split()
                    Ns = int(header[0])
                sfile_ = Common.getLocalFileName(OUU.dname, fname,
                                                 '.compressed' + str(Ns))
                if os.path.exists(sfile_):
                    os.remove(sfile_)
                os.rename(sfile, sfile_)
                sfile = sfile_
            else:
                error = 'OUU: %s does not exist.' % sfile
                Common.showError(error, out)
                return None

            # append scenario file to data structure
            if len(outfiles) > 1 and Ns > min(N, nscenarios_max):
                return outfiles
            else:
                outfiles[Ns] = (sfile, nbins)

        return outfiles