Esempio n. 1
0
 def test_building_does_not_change_structure(self):
     self.sm1.load_sampled_elems()
     self.sm2.load_sampled_elems()
     self.sm1.traverse_and_build()
     print("RMSD", ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg))
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg), 0)
     assertModelsEqual(self.sm1, self.sm2, 12) #Note: Coords do change!!!
Esempio n. 2
0
 def test_cg_rmsd2(self):
     cg1 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A.cg')
     self.assertAlmostEqual(ftme.cg_rmsd(cg1, cg1), 0)
     cg2 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A_sampled.cg')
     self.assertAlmostEqual(ftme.cg_rmsd(cg1, cg2), 25.563376828137844)
Esempio n. 3
0
 def test_building_does_not_change_structure(self):
     self.sm1.load_sampled_elems()
     self.sm2.load_sampled_elems()
     self.sm1.new_traverse_and_build()
     print("RMSD", ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg))
     assertModelsEqual(self.sm1, self.sm2, 12)  #Note: Coords do change!!!
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg),
                            0,
                            places=6)
Esempio n. 4
0
 def test_rotate_keeps_RMSD_zero(self):
     cg1_rot = copy.deepcopy(self.cg1)
     cg1_rot.rotate(30, unit="degrees")
     self.assertAlmostEqual(
         ftme.cg_rmsd(self.cg1, cg1_rot), 0
     )  #This currently uses virtual atoms, thus takes twists into account.
     print(self.cg2.coords)
     cg2_rot = copy.deepcopy(self.cg2)
     cg2_rot.rotate(45, unit="degrees")
     self.assertAlmostEqual(ftme.cg_rmsd(self.cg2, cg2_rot), 0)
Esempio n. 5
0
 def test_HDE_energy(self):
     open_main, open_stats, stdout, stderr = self.runErnwin(
           "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
           "-i 200 --energy HDE --seed 1 --step-save 200 "
           "--ref-img test/fess/data/1GID_A-structure2.coord.dpi15.width120.4.png --scale 120")
     # Although we start from structure1, our result should stronger resemble structure2,
     # Because we used distances from structure2
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     target_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure2.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000200.coord")
     self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg), ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 6
0
 def test_new_traverse_and_build_steps_doesnt_build_after(self):
     self.sm.load_sampled_elems()
     #We need to traverse_and_build at least once from the start!
     self.sm.new_traverse_and_build()
     self.sm.elem_defs["i6"] = self.stat_source.sample_for(self.cg, "i6")
     self.sm.new_traverse_and_build(max_steps=2)
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy),
                            0,
                            places=6)
     self.sm.new_traverse_and_build()
     self.assertGreater(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy), 0)
Esempio n. 7
0
    def test_FPP_energy(self):
        open_main, open_stats, stdout, stderr = self.runErnwin(
              "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
              "-i 200 --energy FPP --seed 1 --step-save 200 --scale 120 "
              "--fpp-landmarks 21,7,12:1,10,7:137,8,4:50,7,2 --ref-img test/fess/data/1GID_A-structure2.forFPP.png")

        # Although we start from structure1, our result should stronger resemble structure2,
        # Because we used distances from structure2
        orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
        target_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure2.coord")
        new_cg = self.getSavedFile(open_stats, "1GID_A/step000200.coord")
        self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg), ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 8
0
 def test_PRO_energy(self):
     # We use distances from a projection of 1GID_A_structure2.coord, 
     # proj.dir (-0.147,-0.311,-0.876)
     open_main, open_stats, stdout, stderr = self.runErnwin(
           "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
           "-i 500 --energy PRO --seed 1 --step-save 500 --projected-dist h0,h1,31.64:"
           "h0,h2,13.56:h0,s3,58.44:h1,h2,30.30:h1,s3,54.27:h2,s3,44.95")
     # Although we start from structure1, our result should stronger resemble structure2,
     # Because we used distances from structure2
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     target_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure2.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000500.coord")
     self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg), ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 9
0
 def test_HDE_energy(self):
     open_main, open_stats, stdout, stderr = self.runErnwin(
         "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
         "-i 200 --energy HDE --seed 1 --step-save 200 "
         "--ref-img test/fess/data/1GID_A-structure2.coord.dpi15.width120.4.png --scale 120"
     )
     # Although we start from structure1, our result should stronger resemble structure2,
     # Because we used distances from structure2
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     target_cg = ftmc.CoarseGrainRNA(
         "test/fess/data/1GID_A-structure2.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000200.coord")
     self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg),
                     ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 10
0
 def test_PRO_energy(self):
     # We use distances from a projection of 1GID_A_structure2.coord,
     # proj.dir (-0.147,-0.311,-0.876)
     open_main, open_stats, stdout, stderr = self.runErnwin(
         "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
         "-i 500 --energy 50PRO --seed 1 --step-save 500 --projected-dist h0,h1,31.64:"
         "h0,h2,13.56:h0,s3,58.44:h1,h2,30.30:h1,s3,54.27:h2,s3,44.95")
     # Although we start from structure1, our result should stronger resemble structure2,
     # Because we used distances from structure2
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     target_cg = ftmc.CoarseGrainRNA(
         "test/fess/data/1GID_A-structure2.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000500.coord")
     self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg),
                     ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 11
0
    def test_FPP_energy(self):
        open_main, open_stats, stdout, stderr = self.runErnwin(
            "python ernwin_new.py test/fess/data/1GID_A-structure1.coord "
            "-i 200 --energy FPP --seed 1 --step-save 200 --scale 120 "
            "--fpp-landmarks 21,7,12:1,10,7:137,8,4:50,7,2 --ref-img test/fess/data/1GID_A-structure2.forFPP.png"
        )

        # Although we start from structure1, our result should stronger resemble structure2,
        # Because we used distances from structure2
        orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
        target_cg = ftmc.CoarseGrainRNA(
            "test/fess/data/1GID_A-structure2.coord")
        new_cg = self.getSavedFile(open_stats, "1GID_A/step000200.coord")
        self.assertLess(ftmsim.cg_rmsd(new_cg, target_cg),
                        ftmsim.cg_rmsd(new_cg, orig_cg))
Esempio n. 12
0
 def test_start_not_from_scratch(self):
     open_main, open_stats, stdout, stderr = self.runErnwin(
                           "python ernwin_new.py test/fess/data/1GID_A-structure1.coord -i 1 "
                           "--step-save 1 --seed 1")
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000001.coord")
     self.assertLess(ftmsim.cg_rmsd(orig_cg, new_cg), 5)
Esempio n. 13
0
def main():
    usage = """
    python calculate_mcc.py struct1.cg struct2.cg
    """
    num_args= 0
    parser = OptionParser(usage=usage)

    #parser.add_option('-o', '--options', dest='some_option', default='yo', help="Place holder for a real option", type='str')
    #parser.add_option('-u', '--useless', dest='uselesss', default=False, action='store_true', help='Another useless option')

    (options, args) = parser.parse_args()

    if len(args) < num_args:
        parser.print_help()
        sys.exit(1)

    cg1 = ftmc.CoarseGrainRNA(args[0])
    cg2 = ftmc.CoarseGrainRNA(args[1])

    confusion_matrix = ftme.confusion_matrix(cg1, cg2)

    
    print "confusion_matrix:", confusion_matrix
    print "mcc:", ftme.mcc(confusion_matrix)
    print "rmsd:", ftme.cg_rmsd(cg1, cg2)
Esempio n. 14
0
def main(args):
    with fuc.hide_traceback():
        cg1, cg2 = fuc.cgs_from_args(
            args, rna_type="3d", enable_logging=True)

        if not (args.acc or args.rmsd or args.pdb_rmsd):
            showall = True
        else:
            showall = False
        if showall or args.acc:
            if cg1.defines != cg2.defines:
                if args.acc:
                    print(
                       "Cannot compare two 3d structures that do not correspond to the same RNA.")
                    sys.exit(1)
            else:
                adj = ftms.AdjacencyCorrelation(cg1)
                print("ACC:\t{:.3f}".format(ftms.mcc(adj.evaluate(cg2))))
        if showall or args.rmsd:
            print("RMSD:\t{:.3f}".format(ftms.cg_rmsd(cg1, cg2)))
        if showall or args.pdb_rmsd:
            if not pdb_rmsd(cg1, cg2):
                # If --pdb-rmsd was not given, just don't print it.
                # If it was given, we exit with non-zero exit status.
                if args.pdb_rmsd:
                    print(
                        "Cannot calculate PDB-RMSD: The two files do not contain the same chains.")
                    sys.exit(1)
Esempio n. 15
0
 def test_start_not_from_scratch(self):
     open_main, open_stats, stdout, stderr = self.runErnwin(
         "python ernwin_new.py test/fess/data/1GID_A-structure1.coord -i 1 "
         "--step-save 1 --seed 1")
     orig_cg = ftmc.CoarseGrainRNA("test/fess/data/1GID_A-structure1.coord")
     new_cg = self.getSavedFile(open_stats, "1GID_A/step000001.coord")
     self.assertLess(ftmsim.cg_rmsd(orig_cg, new_cg), 5)
Esempio n. 16
0
    def test_cg_rmsd3(self):
        cg1 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
        cg2 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
        cg2.coords.rotate(ftuv.rotation_matrix([1.,2.,3.], 22))
        cg2.twists.rotate(ftuv.rotation_matrix([1.,2.,3.], 22))

        self.assertAlmostEqual(ftme.cg_rmsd(cg1,cg2), 0)
Esempio n. 17
0
 def test_cg_rmsd3(self):
     cg1 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A.cg')
     cg2.rotate( 0.75)
     self.assertLess(ftme.cg_rmsd(cg1, cg2), 10**-6)
Esempio n. 18
0
    def test_new_traverse_and_build_start_doesnt_build_before_start(self):
        self.sm.load_sampled_elems()
        #We need to traverse_and_build at least once from the start!
        self.sm.new_traverse_and_build()
        #Change structure at s0
        self.sm.elem_defs["i8"] = self.stat_source.sample_for(self.cg, "i8")

        #Build only part that did not change
        self.sm.new_traverse_and_build(start="s1")
        self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy),
                               0,
                               places=6)
        #Now build everything including the changed s0
        self.sm.new_traverse_and_build()
        self.assertGreater(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy),
                           9 * 10**-6)
Esempio n. 19
0
 def test_cg_rmsd(self):
     cg1 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A_sampled.cg')
     residues1 = ftug.bg_virtual_residues(cg1)
     residues2 = ftug.bg_virtual_residues(cg2)
     self.assertAlmostEqual(ftme.rmsd(residues1, residues2),
                            ftme.cg_rmsd(cg1, cg2))
Esempio n. 20
0
def main(args):
    with fuc.hide_traceback():
        cg1, cg2 = fuc.cgs_from_args(args, rna_type="3d", enable_logging=True)

        if not (args.acc or args.rmsd or args.pdb_rmsd):
            showall = True
        else:
            showall = False
        if showall or args.acc:
            if cg1.defines != cg2.defines:
                if args.acc:
                    print(
                        "Cannot compare two 3d structures that do not correspond to the same RNA."
                    )
                    sys.exit(1)
            else:
                adj = ftms.AdjacencyCorrelation(cg1)
                print("ACC:\t{:.3f}".format(ftms.mcc(adj.evaluate(cg2))))
        if showall or args.rmsd:
            print("RMSD:\t{:.3f}".format(ftms.cg_rmsd(cg1, cg2)))
        if showall or args.pdb_rmsd:
            if not pdb_rmsd(cg1, cg2):
                # If --pdb-rmsd was not given, just don't print it.
                # If it was given, we exit with non-zero exit status.
                if args.pdb_rmsd:
                    print(
                        "Cannot calculate PDB-RMSD: The two files do not contain the same chains."
                    )
                    sys.exit(1)
Esempio n. 21
0
 def test_new_traverse_and_build_steps_really_builds(self):
     self.sm.load_sampled_elems()
     #We need to traverse_and_build at least once from the start!
     self.sm.new_traverse_and_build()
     print(self.sm.bg.traverse_graph())
     self.sm.elem_defs["i7"] = self.stat_source.sample_for(self.cg, "i7")
     self.sm.new_traverse_and_build(max_steps=5)
     self.assertGreater(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy), 0)
Esempio n. 22
0
 def test_extracting_stats_from_sm_after_building(self):
     self.sm1.load_sampled_elems()
     self.sm1.new_traverse_and_build()
     self.sm2.elem_defs = {}
     for d in self.sm1.elem_defs:
         self.sm2.elem_defs[d] = self.sm1.elem_defs[d]
     self.sm2.new_traverse_and_build()
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg), 0)
Esempio n. 23
0
 def test_extracting_stats_from_sm_after_building(self):
     self.sm1.load_sampled_elems()        
     self.sm1.traverse_and_build()
     self.sm2.elem_defs={}
     for d in self.sm1.elem_defs:
         self.sm2.elem_defs[d] = self.sm1.elem_defs[d]
     self.sm2.traverse_and_build()
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg), 0)
     assertModelsEqual(self.sm1, self.sm2, 12)
Esempio n. 24
0
 def test_new_traverse_and_build(self):
     self.sm.load_sampled_elems()
     self.sm.new_traverse_and_build()
     for k in self.cg_copy.defines.keys():
         log.info("k: %s file: %s, built %s", k,
                  ftuv.magnitude(self.cg_copy.coords.get_direction(k)),
                  ftuv.magnitude(self.sm.bg.coords.get_direction(k)))
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy),
                            0,
                            places=6)
Esempio n. 25
0
    def test_rotate_keeps_RMSD_zero(self):
        cg1_rot = copy.deepcopy(self.cg1)
        cg1_rot.rotate(30, unit="degrees")
        # This currently uses virtual atoms, thus takes twists into account.
        self.assertLess(ftme.cg_rmsd(self.cg1, cg1_rot), 10**-6)

        cg2_rot = copy.deepcopy(self.cg2)
        cg2_rot.rotate(45, unit="degrees")

        a, b = self.cg2.get_ordered_virtual_residue_poss(True)
        log.warning("------------------------")
        c, d = cg2_rot.get_ordered_virtual_residue_poss(True)
        c2 = np.dot(c, ftuv.rotation_matrix("x", math.radians(-45)).T)
        log.warning("==================================")
        for i, coord in enumerate(a):
            if any(abs(coord - c2[i]) > 10**-4):
                log.warning("%s %s %s %s", coord, b[i], c2[i], d[i])

        self.assertLess(ftme.cg_rmsd(self.cg2, cg2_rot), 10**-6)
Esempio n. 26
0
    def test_new_traverse_and_build_start_really_builds(self):
        self.sm.load_sampled_elems()
        #We need to traverse_and_build at least once from the start!
        self.sm.new_traverse_and_build()
        #Change structure at s6
        self.sm.elem_defs["i6"] = self.stat_source.sample_for(self.cg, "i6")

        #Build part that did change
        self.sm.new_traverse_and_build(start="s2")
        self.assertGreater(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy), 0)
Esempio n. 27
0
    def test_rotate_keeps_RMSD_zero(self):
        cg1_rot = copy.deepcopy(self.cg1)
        cg1_rot.rotate(30, unit="degrees")
        # This currently uses virtual atoms, thus takes twists into account.
        self.assertLess(ftme.cg_rmsd(self.cg1, cg1_rot), 10**-6)


        cg2_rot = copy.deepcopy(self.cg2)
        cg2_rot.rotate(45, unit="degrees")

        a,b = self.cg2.get_ordered_virtual_residue_poss(True)
        log.warning("------------------------")
        c,d = cg2_rot.get_ordered_virtual_residue_poss(True)
        c2 = np.dot(c, ftuv.rotation_matrix("x", math.radians(-45)).T)
        log.warning("==================================")
        for i, coord in enumerate(a):
            if any(abs(coord-c2[i])>10**-4):
                log.warning("%s %s %s %s",coord, b[i], c2[i], d[i])

        self.assertLess(ftme.cg_rmsd(self.cg2, cg2_rot), 10**-6)
Esempio n. 28
0
 def test_cg_rmsd(self):
     cg1 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A_sampled.cg')
     cg1.add_all_virtual_residues()
     cg2.add_all_virtual_residues()
     residues1 = cg1.get_ordered_virtual_residue_poss()
     residues2 = cg2.get_ordered_virtual_residue_poss()
     self.assertAlmostEqual(
         ftme.rmsd(residues1, residues2), ftme.cg_rmsd(cg1, cg2))
Esempio n. 29
0
 def test_coords_from_direction_with_pseudoknot(self):
     #This tests the case where the link is inserted from reverse direction.
     cg = ftmc.CoarseGrainRNA('test/forgi/threedee/data/3D0U_A.cg')
     cg_old = copy.deepcopy(cg)
     coords = cg.get_coordinates_array()
     directions = cg.coords_to_directions()
     cg.coords.clear()
     cg.coords_from_directions(directions)
     self.assertAlmostEqual(ftme.cg_rmsd(cg, cg_old), 0)
     new_coords = cg.get_coordinates_array()
     offset = (coords - new_coords)
     assert np.allclose(offset, offset[0])
Esempio n. 30
0
 def test_save_and_load_does_not_change_coords(self):
     self.sm1.load_sampled_elems()
     self.sm2.load_sampled_elems()
     self.sm2.traverse_and_build()
     cg2_str = self.sm2.bg.to_cg_string() 
     bg_loaded=ftmc.CoarseGrainRNA()
     bg_loaded.from_cg_string(cg2_str) 
     sm2_reloaded = fbm.SpatialModel( bg_loaded )
     sm2_reloaded.load_sampled_elems()        
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm2.bg, sm2_reloaded.bg), 0)
     assertModelsEqual(self.sm2, sm2_reloaded, 12)
     assertModelsEqual(self.sm1, sm2_reloaded, 12)
Esempio n. 31
0
 def test_coords_from_direction(self):
     cg = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1I9V_noPK.cg')
     cg_old = copy.deepcopy(cg)
     coords = cg.get_coordinates_array()
     directions = coords[1::2] - coords[0::2]
     cg.coords.clear()
     cg.coords_from_directions(directions)
     self.assertAlmostEqual(ftme.cg_rmsd(cg, cg_old),
                            0)  #This only looks at stems
     # The coordinates should be the same as before except for a constant offset
     new_coords = cg.get_coordinates_array()
     offset = (coords - new_coords)
     assert np.allclose(offset, offset[0])
Esempio n. 32
0
 def test_save_and_load_does_not_change_coords(self):
     self.sm1.load_sampled_elems()
     self.sm2.load_sampled_elems()
     self.sm2.new_traverse_and_build()
     cg2_str = self.sm2.bg.to_cg_string()
     bg_loaded = ftmc.CoarseGrainRNA.from_bg_file(cg2_str)
     sm2_reloaded = fbm.SpatialModel(bg_loaded)
     sm2_reloaded.load_sampled_elems()
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm2.bg, sm2_reloaded.bg),
                            0,
                            places=6)
     #assertModelsEqual(self.sm2, sm2_reloaded, 12)
     assertModelsEqual(self.sm1, sm2_reloaded, 12)
Esempio n. 33
0
    def test_multiple_chain_to_cg(self):
        cg, = ftmc.CoarseGrainRNA.from_pdb(
            'test/forgi/threedee/data/4GV9.pdb', load_chains=None)
        log.debug("======= FIRST IS LOADED =========")
        cg_str = cg.to_cg_string()
        log.debug("\n" + cg_str)
        print(cg_str)
        cg2 = ftmc.CoarseGrainRNA.from_bg_string(cg_str)
        self.assertEqual(cg.defines, cg2.defines)
        self.assertLess(ftme.cg_rmsd(cg, cg2), 10**-6)
        self.assertEqual(cg.backbone_breaks_after, cg2.backbone_breaks_after)

        cg, = ftmc.CoarseGrainRNA.from_pdb(
            'test/forgi/threedee/data/3CQS.pdb', load_chains=None)
        cg.log(logging.WARNING)
        cg_str = cg.to_cg_string()
        cg2 = ftmc.CoarseGrainRNA.from_bg_string(cg_str)

        self.assertEqual(cg.defines, cg2.defines)
        # This only looks at stems
        self.assertLess(ftme.cg_rmsd(cg, cg2), 10**-6)
        self.assertEqual(cg.backbone_breaks_after, cg2.backbone_breaks_after)
Esempio n. 34
0
    def test_multiple_chain_to_cg(self):
        cg, = ftmc.CoarseGrainRNA.from_pdb('test/forgi/threedee/data/4GV9.pdb',
                                           load_chains=None)
        log.debug("======= FIRST IS LOADED =========")
        cg_str = cg.to_cg_string()
        log.debug("\n" + cg_str)
        print(cg_str)
        cg2 = ftmc.CoarseGrainRNA.from_bg_string(cg_str)
        self.assertEqual(cg.defines, cg2.defines)
        self.assertLess(ftme.cg_rmsd(cg, cg2), 10**-6)
        self.assertEqual(cg.backbone_breaks_after, cg2.backbone_breaks_after)

        cg, = ftmc.CoarseGrainRNA.from_pdb('test/forgi/threedee/data/3CQS.pdb',
                                           load_chains=None)
        cg.log(logging.WARNING)
        cg_str = cg.to_cg_string()
        cg2 = ftmc.CoarseGrainRNA.from_bg_string(cg_str)

        self.assertEqual(cg.defines, cg2.defines)
        # This only looks at stems
        self.assertLess(ftme.cg_rmsd(cg, cg2), 10**-6)
        self.assertEqual(cg.backbone_breaks_after, cg2.backbone_breaks_after)
Esempio n. 35
0
 def test_extracting_stats_from_cg_after_building(self):
     self.sm1.load_sampled_elems()
     self.sm1.new_traverse_and_build()
     self.sm2.elem_defs = {}
     cg1 = self.sm1.bg
     for d in cg1.defines:
         stats = cg1.get_stats(d)
         self.sm2.elem_defs[d] = stats[0]
     self.sm2.new_traverse_and_build()
     assertModelsEqual(self.sm1,
                       self.sm2,
                       12,
                       ignore_keys=["sampled", "elem_defs"])
     self.assertAlmostEqual(ftmsim.cg_rmsd(self.sm1.bg, self.sm2.bg), 0)
Esempio n. 36
0
def main(args):

    if len(args.compareTo)==1:
        cg1 = ftmc.CoarseGrainRNA(args.reference[0])
        cg2 = ftmc.CoarseGrainRNA(args.compareTo[0])
        print (ftms.cg_rmsd(cg1, cg2))
    else:
        print ("{:15}\t{:6}\t{:6}\t{:6}".format("filename","RMSD", "dRMSD", "ACC"))
        ref_cg = ftmc.CoarseGrainRNA(args.reference[0])
        reference = ref_cg.get_ordered_virtual_residue_poss()
        acc_calc = ftms.AdjacencyCorrelation(ref_cg)
        for filename in args.compareTo:
            cg=ftmc.CoarseGrainRNA(filename)
            curr_vress=cg.get_ordered_virtual_residue_poss()
            rmsd  = ftur.rmsd(reference, curr_vress)
            drmsd = ftur.drmsd(reference, curr_vress)
            acc   = ftms.mcc(acc_calc.evaluate(cg))
            print ("{:15}\t{:6.3f}\t{:6.3f}\t{:6.3f}".format(filename[-15:], rmsd, drmsd, acc))
Esempio n. 37
0
    def test_coords_from_direction_with_pseudoknot(self):
        # This tests the case where the link is inserted from reverse direction.
        cg = ftmc.CoarseGrainRNA.from_bg_file(
            'test/forgi/threedee/data/3D0U_A.cg')
        cg_old = copy.deepcopy(cg)

        coords = cg.get_coordinates_array()
        directions = cg.coords_to_directions()

        cg._init_coords()
        cg.twists = cg_old.twists
        log.info("len(coords):{}, len(directions):{}, len(defines):{}".format(
            len(coords), len(directions), len(cg.defines)))

        cg.coords_from_directions(directions)
        self.assertLess(ftme.cg_rmsd(cg, cg_old), 10**-6)
        new_coords = cg.get_coordinates_array()
        offset = (coords - new_coords)
        assert np.allclose(offset, offset[0])
Esempio n. 38
0
    def test_coords_from_direction_with_pseudoknot(self):
        # This tests the case where the link is inserted from reverse direction.
        cg = ftmc.CoarseGrainRNA.from_bg_file(
            'test/forgi/threedee/data/3D0U_A.cg')
        cg_old = copy.deepcopy(cg)

        coords = cg.get_coordinates_array()
        directions = cg.coords_to_directions()

        cg._init_coords()
        cg.twists = cg_old.twists
        log.info("len(coords):{}, len(directions):{}, len(defines):{}".format(
            len(coords), len(directions), len(cg.defines)))

        cg.coords_from_directions(directions)
        self.assertLess(ftme.cg_rmsd(cg, cg_old), 10**-6)
        new_coords = cg.get_coordinates_array()
        offset = (coords - new_coords)
        assert np.allclose(offset, offset[0])
Esempio n. 39
0
def main(args):

    if len(args.compareTo) == 1:
        cg1 = ftmc.CoarseGrainRNA(args.reference[0])
        cg2 = ftmc.CoarseGrainRNA(args.compareTo[0])
        print(ftms.cg_rmsd(cg1, cg2))
    else:
        print("{:15}\t{:6}\t{:6}\t{:6}".format("filename", "RMSD", "dRMSD",
                                               "ACC"))
        ref_cg = ftmc.CoarseGrainRNA(args.reference[0])
        reference = ref_cg.get_ordered_virtual_residue_poss()
        acc_calc = ftms.AdjacencyCorrelation(ref_cg)
        for filename in args.compareTo:
            cg = ftmc.CoarseGrainRNA(filename)
            curr_vress = cg.get_ordered_virtual_residue_poss()
            rmsd = ftur.rmsd(reference, curr_vress)
            drmsd = ftur.drmsd(reference, curr_vress)
            acc = ftms.mcc(acc_calc.evaluate(cg))
            print("{:15}\t{:6.3f}\t{:6.3f}\t{:6.3f}".format(
                filename[-15:], rmsd, drmsd, acc))
Esempio n. 40
0
def main():
    usage = """
    python calculate_mcc.py struct1.cg struct2.cg
    """
    num_args = 0
    parser = OptionParser(usage=usage)

    #parser.add_option('-o', '--options', dest='some_option', default='yo', help="Place holder for a real option", type='str')
    #parser.add_option('-u', '--useless', dest='uselesss', default=False, action='store_true', help='Another useless option')

    (options, args) = parser.parse_args()

    if len(args) < num_args:
        parser.print_help()
        sys.exit(1)

    cg1 = ftmc.CoarseGrainRNA(args[0])
    cg2 = ftmc.CoarseGrainRNA(args[1])

    confusion_matrix = ftme.confusion_matrix(cg1, cg2)

    print "confusion_matrix:", confusion_matrix
    print "mcc:", ftme.mcc(confusion_matrix)
    print "rmsd:", ftme.cg_rmsd(cg1, cg2)
Esempio n. 41
0
def main():
    usage = """
    python cg_to_fornac_html.py file1.cg file2.cg

    Convert coarse grain files to html files using fornac
    to display a 2D version of the structure.
    """
    num_args= 1
    parser = OptionParser(usage=usage)

    parser.add_option('-d', '--distance', dest='distance', default=25, help="Draw links between elements that are within a certain distance from each other", type='float')
    parser.add_option('-b', '--bp-distance', dest='bp_distance', default=16, help="Draw links only between nucleotides which are so many nucleotides apart", type='int')
    parser.add_option('-s', '--sort-by', dest='sort_by', default='mcc', help="What to sort by (options: mcc, pca)", type='string')
    parser.add_option('-n', '--names', dest='names', default=False, action='store_true', help='Add the name of the structure to the display')

    (options, args) = parser.parse_args()

    if len(args) < num_args:
        parser.print_help()
        sys.exit(1)

    structs = []
    pair_bitmaps = []
    cgs = []
    all_links = []
    mccs = []
    cm=None
    for filename in args:
        cg = ftmc.CoarseGrainRNA(filename)
        cgs += [cg]
        if not cm:
            cm=ftme.AdjacencyCorrelation(cg)
        (links, pair_bitmap) = extract_extra_links(cg, options.distance, options.bp_distance,
                                                  correct_links = None if len(all_links) == 0 else all_links[0])

        all_links += [links]

        pair_bitmaps += [pair_bitmap]
        mcc = ftme.mcc(cm.evaluate(cg))
        rmsd = ftme.cg_rmsd(cgs[0], cg)

        seq_struct = {"sequence": cg.seq,
                      "structure": cg.to_dotbracket_string(),
                      "extraLinks": links}

        fud.pv('options.names')
        fud.pv('mcc, rmsd')
        if options.names:
            seq_struct['name'] = op.basename(filename) + " ({:.2f},{:.1f})".format(mcc, rmsd)
        else:
            seq_struct['name'] = ''

        structs += [seq_struct]
        mccs += [mcc]

    if options.sort_by == 'pca':
        print >>sys.stderr, "Sorting by pca"
        ix = reorder_structs(pair_bitmaps) 
    else:
        print >>sys.stderr, "Sorting by mcc"
        ix = np.argsort(-np.array(mccs))

    new_array = [0 for i in range(len(ix))]
    for i,x in enumerate(ix):
        new_array[i] = structs[x]

    print output_template.format(json.dumps(new_array))
Esempio n. 42
0
 def test_rotate_keeps_RMSD_zero0(self):
     cg1_rot = copy.deepcopy(self.cg1)
     cg1_rot.rotate(30, unit="degrees")
     cg1_rot.rotate(-30, unit="degrees")
     self.assertLess(ftme.cg_rmsd(self.cg1, cg1_rot), 10**-6)
Esempio n. 43
0
def main(args):

    cgs = []
    projs = []
    for file_ in args.files:
        cgs.append(ftmc.CoarseGrainRNA(file_))
        try:
            projs.append(ftmp.Projection2D(cgs[-1]))
        except ValueError:
            projs.append(None)

    p_rmsds = OrderedDict()
    cg_rmsds = OrderedDict()
    p_rmsds[0] = 0.0
    cg_rmsds[0] = 0.0

    if "," in args.max_diff:
        diffs = map(int, args.max_diff.split(","))
    else:
        diffs = range(1, int(args.max_diff) + 1)
    for diff in diffs:
        print ("diff {}".format(diff))
        prmsd = 0
        cgrmsd = 0
        count = 0
        pcount = 0
        for i in range(0, len(cgs) - diff):
            count += 1
            try:
                vrs1 = np.array([x for p in sorted(projs[i]._coords.keys()) for x in projs[i]._coords[p]])
                vrs2 = np.array([x for p in sorted(projs[i + diff]._coords.keys()) for x in projs[i + diff]._coords[p]])
                prmsd += ftms.rmsd(vrs1, vrs2)
                pcount += 1
            except:
                pass
            cgrmsd += ftms.cg_rmsd(cgs[i], cgs[i + diff])
        if count:
            cg_rmsds[diff] = cgrmsd / count
        if pcount:
            p_rmsds[diff] = prmsd / pcount
    print "projection RMSDs:", p_rmsds
    print "3D-RMSDs:", cg_rmsds
    import matplotlib.pyplot as plt

    if args.target_structure and args.hausdorff_reference:
        fig, (ax, axT, axH) = plt.subplots(3)
    elif args.target_structure:
        fig, (ax, axT) = plt.subplots(2)
    elif args.hausdorff_reference:
        fig, (ax, axH) = plt.subplots(2)
    else:
        fig, ax = plt.subplots()

    if args.target_structure:
        target = ftmc.CoarseGrainRNA(args.target_structure)
        target_rmsds = []
        target_proj_rmsds = []
        try:
            target_proj = ftmp.Projection2D(target)
        except ValueError:
            pass
        else:
            target_vrs = np.array([x for p in sorted(target_proj._coords.keys()) for x in target_proj._coords[p]])
            for proj in projs:
                try:
                    vrs1 = np.array([x for p in sorted(proj._coords.keys()) for x in proj._coords[p]])
                    prmsd = ftms.rmsd(vrs1, target_vrs)
                    target_proj_rmsds.append(prmsd)
                except:
                    target_proj_rmsds.append(float("nan"))
        target_vrs = ftug.bg_virtual_residues(target)
        for cg in cgs:
            vrs1 = ftug.bg_virtual_residues(cg)
            cgrmsd = ftms.rmsd(vrs1, target_vrs)
            target_rmsds.append(cgrmsd)
        xval = np.arange(len(cgs)) * args.step_size
        if target_proj_rmsds:
            axT.plot(xval, target_proj_rmsds, label="Projection", color="green")
        axT.plot(xval, target_rmsds, label="3D", color="blue")
        axT.set_title("RMSD to target structure")
        axT.set_xlabel("step")
        axT.set_ylabel("RMSD")
        leg = axT.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)
    if args.hausdorff_reference:
        ref_img = scipy.ndimage.imread(args.hausdorff_reference)
        ref_quarter = scipy.ndimage.zoom(ref_img, 0.3) > 150
        degrees = get_refimg_longest_axis(ref_img)
        global_optima = []
        local_optima = []
        for cg in cgs:
            score, img, params = fph.try_parameters(ref_img, args.hausdorff_scale, cg, degrees)
            local_optima.append(score)
            s, i, params = fph.globally_minimal_distance(
                ref_quarter, args.hausdorff_scale, cg, start_points=40, starting_rotations=degrees, virtual_atoms=False
            )
            score, img, params = fph.locally_minimal_distance(
                ref_img, args.hausdorff_scale, cg, params[1], params[2], params[0], maxiter=200
            )
            global_optima.append(score)

        axH.plot(xval, global_optima, label="Global Minimization", color="red")
        axH.plot(xval, local_optima, label="Local Minimization", color="lavender")
        axH.set_title("Hausdorff Distance to reference image")
        axH.set_xlabel("step")
        axH.set_ylabel("Hausdorff Distance")
        leg = axH.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)

    p_rmsds = np.array(p_rmsds.items())
    cg_rmsds = np.array(cg_rmsds.items())
    ax.plot(p_rmsds[:, 0] * args.step_size, p_rmsds[:, 1], label="Projection", color="green", marker="o")
    ax.plot(cg_rmsds[:, 0] * args.step_size, cg_rmsds[:, 1], label="3D", color="blue", marker="o")
    ax.set_title("Average RMSD between structures X steps apart.")
    ax.set_xlabel("steps apart")
    ax.set_ylabel("RMSD")
    leg = ax.legend(framealpha=0.8, fancybox=True)
    leg.get_frame().set_linewidth(0.0)
    fig.patch.set_facecolor("white")
    if args.save_fig:
        with open(args.save_fig, "w") as f:
            pickle.dump(fig, f)
    plt.show()
Esempio n. 44
0
    def view_2d_embedding(self, reference=None):
        # http://baoilleach.blogspot.co.at/2014/01/convert-distance-matrix-to-2d.html

        if reference is None:
            # First cluster all structures based on pairwise RMSD
            db = self._cluster_dbscan()
            labels = db.labels_
            core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
            core_samples_mask[db.core_sample_indices_] = True
            unique_labels = set(labels)

            # Then calculate the 2D coordinates for our embedding
            mds = MDS(n_components=2,
                      dissimilarity="precomputed", random_state=6)
            results = mds.fit(self._rmsd)
            coords = results.embedding_

            # Now plot
            plt.plot(coords[:, 0], coords[:, 1], '-', color="blue")

            colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
            for k, col in zip(unique_labels, colors):
                if k == -1:
                    # Black used for noise.
                    col = 'k'
                class_member_mask = (labels == k)

                plt.plot(coords[:, 0][class_member_mask & core_samples_mask],
                         coords[:, 1][class_member_mask & core_samples_mask],
                         'o', markerfacecolor=col, markeredgecolor='k', markersize=6
                         )
                plt.plot(coords[:, 0][class_member_mask & ~core_samples_mask],
                         coords[:, 1][class_member_mask & ~core_samples_mask],
                         'o', markerfacecolor=col, markeredgecolor=col, markersize=1
                         )
            plt.savefig("embedding_{}.svg".format(self._cgs[0].name))
            plt.clf()
            plt.close()
        else:
            # Create a huge distance matrix
            alldists = np.zeros(
                ((len(self._cgs) + len(reference) + 1), (len(self._cgs) + len(reference) + 1)))
            for i, j in it.combinations(range(len(alldists)), 2):
                if i < len(self._cgs):
                    cg1 = self._cgs[i]
                elif i < len(self._cgs) + len(reference):
                    cg1 = reference[i - len(self._cgs)]
                else:
                    assert i == len(self._cgs) + len(reference)
                    cg1 = self._reference_cg
                if j < len(self._cgs):
                    cg2 = self._cgs[j]
                elif j < len(self._cgs) + len(reference):
                    cg2 = reference[j - len(self._cgs)]
                else:
                    assert j == len(self._cgs) + len(reference)
                    cg2 = self._reference_cg
                alldists[i, j] = alldists[j, i] = ftms.cg_rmsd(cg1, cg2)
            # Then calculate the 2D coordinates for our embedding
            mds = MDS(n_components=2,
                      dissimilarity="precomputed", random_state=6)
            results = mds.fit(alldists)
            coords = results.embedding_
            # Now plot
            plt.plot(coords[len(self._cgs):len(self._cgs) + len(reference), 0],
                     coords[len(self._cgs):len(self._cgs) + len(reference), 1], 's', color="green")
            plt.plot(coords[:len(self._cgs), 0],
                     coords[:len(self._cgs), 1], '-o', color="blue")
            plt.plot([coords[-1, 0]], [coords[-1, 1]], 's', color="red")
            plt.savefig("embedding1_{}.svg".format(self._cgs[0].name))
            plt.clf()
            plt.close()
Esempio n. 45
0
 def test_rotate_keeps_RMSD_zero0(self):
     cg1_rot = copy.deepcopy(self.cg1)
     cg1_rot.rotate(30, unit="degrees")
     cg1_rot.rotate(-30, unit="degrees")
     self.assertLess(ftme.cg_rmsd(self.cg1, cg1_rot), 10**-6)
Esempio n. 46
0
 def test_cg_rmsd2(self):
     cg1 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A_sampled.cg')
     self.assertAlmostEqual(ftme.cg_rmsd(cg1, cg2), 25.170088934277373)
Esempio n. 47
0
 def test_cg_rmsd2(self):
     cg1 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
     self.assertAlmostEqual(ftme.cg_rmsd(cg1,cg1), 0)
     cg2 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A_sampled.cg')
     self.assertAlmostEqual(ftme.cg_rmsd(cg1,cg2), 7.684377397812648)
Esempio n. 48
0
def main(args):

    cgs = []
    projs = []
    for file_ in args.files:
        cgs.append(ftmc.CoarseGrainRNA(file_))
        try:
            projs.append(ftmp.Projection2D(cgs[-1]))
        except ValueError:
            projs.append(None)

    p_rmsds = OrderedDict()
    cg_rmsds = OrderedDict()
    p_rmsds[0] = 0.
    cg_rmsds[0] = 0.

    if "," in args.max_diff:
        diffs = map(int, args.max_diff.split(","))
    else:
        diffs = range(1, int(args.max_diff) + 1)
    for diff in diffs:
        print("diff {}".format(diff))
        prmsd = 0
        cgrmsd = 0
        count = 0
        pcount = 0
        for i in range(0, len(cgs) - diff):
            count += 1
            try:
                vrs1 = np.array([
                    x for p in sorted(projs[i]._coords.keys())
                    for x in projs[i]._coords[p]
                ])
                vrs2 = np.array([
                    x for p in sorted(projs[i + diff]._coords.keys())
                    for x in projs[i + diff]._coords[p]
                ])
                prmsd += ftms.rmsd(vrs1, vrs2)
                pcount += 1
            except:
                pass
            cgrmsd += ftms.cg_rmsd(cgs[i], cgs[i + diff])
        if count:
            cg_rmsds[diff] = cgrmsd / count
        if pcount:
            p_rmsds[diff] = prmsd / pcount
    print("projection RMSDs:", p_rmsds)
    print("3D-RMSDs:", cg_rmsds)
    import matplotlib.pyplot as plt
    if args.target_structure and args.hausdorff_reference:
        fig, (ax, axT, axH) = plt.subplots(3)
    elif args.target_structure:
        fig, (ax, axT) = plt.subplots(2)
    elif args.hausdorff_reference:
        fig, (ax, axH) = plt.subplots(2)
    else:
        fig, ax = plt.subplots()

    if args.target_structure:
        target = ftmc.CoarseGrainRNA(args.target_structure)
        target_rmsds = []
        target_proj_rmsds = []
        try:
            target_proj = ftmp.Projection2D(target)
        except ValueError:
            pass
        else:
            target_vrs = np.array([
                x for p in sorted(target_proj._coords.keys())
                for x in target_proj._coords[p]
            ])
            for proj in projs:
                try:
                    vrs1 = np.array([
                        x for p in sorted(proj._coords.keys())
                        for x in proj._coords[p]
                    ])
                    prmsd = ftms.rmsd(vrs1, target_vrs)
                    target_proj_rmsds.append(prmsd)
                except:
                    target_proj_rmsds.append(float("nan"))
        target_vrs = target.get_ordered_virtual_residue_poss()
        for cg in cgs:
            vrs1 = cg.get_ordered_virtual_residue_poss()
            cgrmsd = ftms.rmsd(vrs1, target_vrs)
            target_rmsds.append(cgrmsd)
        xval = np.arange(len(cgs)) * args.step_size
        if target_proj_rmsds:
            axT.plot(xval,
                     target_proj_rmsds,
                     label="Projection",
                     color="green")
        axT.plot(xval, target_rmsds, label="3D", color="blue")
        axT.set_title("RMSD to target structure")
        axT.set_xlabel("step")
        axT.set_ylabel("RMSD")
        leg = axT.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)
    if args.hausdorff_reference:
        ref_img = scipy.ndimage.imread(args.hausdorff_reference)
        ref_quarter = (scipy.ndimage.zoom(ref_img, 0.3) > 150)
        degrees = get_refimg_longest_axis(ref_img)
        global_optima = []
        local_optima = []
        for cg in cgs:
            score, img, params = fph.try_parameters(ref_img,
                                                    args.hausdorff_scale, cg,
                                                    degrees)
            local_optima.append(score)
            s, i, params = fph.globally_minimal_distance(
                ref_quarter,
                args.hausdorff_scale,
                cg,
                start_points=40,
                starting_rotations=degrees,
                virtual_atoms=False)
            score, img, params = fph.locally_minimal_distance(
                ref_img,
                args.hausdorff_scale,
                cg,
                params[1],
                params[2],
                params[0],
                maxiter=200)
            global_optima.append(score)

        axH.plot(xval, global_optima, label="Global Minimization", color="red")
        axH.plot(xval,
                 local_optima,
                 label="Local Minimization",
                 color="lavender")
        axH.set_title("Hausdorff Distance to reference image")
        axH.set_xlabel("step")
        axH.set_ylabel("Hausdorff Distance")
        leg = axH.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)

    p_rmsds = np.array(list(p_rmsds.items()))
    cg_rmsds = np.array(list(cg_rmsds.items()))
    ax.plot(p_rmsds[:, 0] * args.step_size,
            p_rmsds[:, 1],
            label="Projection",
            color="green",
            marker="o")
    ax.plot(cg_rmsds[:, 0] * args.step_size,
            cg_rmsds[:, 1],
            label="3D",
            color="blue",
            marker="o")
    ax.set_title("Average RMSD between structures X steps apart.")
    ax.set_xlabel("steps apart")
    ax.set_ylabel("RMSD")
    leg = ax.legend(framealpha=0.8, fancybox=True)
    leg.get_frame().set_linewidth(0.0)
    fig.patch.set_facecolor('white')
    if args.save_fig:
        with open(args.save_fig, "w") as f:
            pickle.dump(fig, f)
    plt.show()
Esempio n. 49
0
def main():
    usage = """
    python cg_to_fornac_html.py file1.cg file2.cg

    Convert coarse grain files to html files using fornac
    to display a 2D version of the structure.
    """
    num_args = 1
    parser = OptionParser(usage=usage)

    parser.add_option(
        '-d',
        '--distance',
        dest='distance',
        default=25,
        help=
        "Draw links between elements that are within a certain distance from each other",
        type='float')
    parser.add_option(
        '-b',
        '--bp-distance',
        dest='bp_distance',
        default=16,
        help=
        "Draw links only between nucleotides which are so many nucleotides apart",
        type='int')
    parser.add_option('-s',
                      '--sort-by',
                      dest='sort_by',
                      default='mcc',
                      help="What to sort by (options: mcc, pca)",
                      type='string')
    parser.add_option('-n',
                      '--names',
                      dest='names',
                      default=False,
                      action='store_true',
                      help='Add the name of the structure to the display')

    (options, args) = parser.parse_args()

    if len(args) < num_args:
        parser.print_help()
        sys.exit(1)

    structs = []
    pair_bitmaps = []
    cgs = []
    all_links = []
    mccs = []
    cm = None
    for filename in args:
        cg = ftmc.CoarseGrainRNA(filename)
        cgs += [cg]
        if not cm:
            cm = ftme.AdjacencyCorrelation(cg)
        (links, pair_bitmap) = extract_extra_links(
            cg,
            options.distance,
            options.bp_distance,
            correct_links=None if len(all_links) == 0 else all_links[0])

        all_links += [links]

        pair_bitmaps += [pair_bitmap]
        mcc = ftme.mcc(cm.evaluate(cg))
        rmsd = ftme.cg_rmsd(cgs[0], cg)

        seq_struct = {
            "sequence": cg.seq,
            "structure": cg.to_dotbracket_string(),
            "extraLinks": links
        }

        fud.pv('options.names')
        fud.pv('mcc, rmsd')
        if options.names:
            seq_struct['name'] = op.basename(
                filename) + " ({:.2f},{:.1f})".format(mcc, rmsd)
        else:
            seq_struct['name'] = ''

        structs += [seq_struct]
        mccs += [mcc]

    if options.sort_by == 'pca':
        print("Sorting by pca", file=sys.stderr)
        ix = reorder_structs(pair_bitmaps)
    else:
        print("Sorting by mcc", file=sys.stderr)
        ix = np.argsort(-np.array(mccs))

    new_array = [0 for i in range(len(ix))]
    for i, x in enumerate(ix):
        new_array[i] = structs[x]

    print(output_template.format(json.dumps(new_array)))
Esempio n. 50
0
 def rmsd_to_stru(cgs, reference_cg):
     rmsd = np_nans(len(cgs))
     for i, cg in enumerate(cgs):
         rmsd[i] = ftms.cg_rmsd(cg, reference_cg)
     return rmsd
Esempio n. 51
0
 def test_building_samples_stats(self):
     for i in range(RAND_REPETITION):
         self.builder.build(self.sm)
         self.assertGreater(ftmsim.cg_rmsd(self.sm.bg, self.cg_copy), 1)