Esempio n. 1
0
def clip_surface():
    """Clip the stl model."""
    if not check_surface():
        return
    itemlist = [['axis',0],['begin',0.0],['end',1.0],['nodes','any']]
    res,accept = widgets.inputDialog(itemlist,'Clipping Parameters').getResult()
    if accept:
        updateGUI()
        nodes,elems = PF['old_surface'] = PF['surface']
        F = Formex(nodes[elems])
        bb = F.bbox()
        GD.message("Original bbox: %s" % bb) 
        xmi = bb[0][0]
        xma = bb[1][0]
        dx = xma-xmi
        axis = int(res[0][1])
        xc1 = xmi + float(res[1][1]) * dx
        xc2 = xmi + float(res[2][1]) * dx
        nodid = res[3][1]
        print nodid
        clear()
        draw(F,color='yellow')
        w = F.test(nodes='any',dir=axis,min=xc1,max=xc2)
        F = F.clip(w)
        draw(F,clor='red')
Esempio n. 2
0
def show_volume():
    """Display the volume model."""
    if PF['volume'] is None:
        return
    nodes,elems = PF['volume']
    F = Formex(nodes[elems])
    GD.message("BBOX = %s" % F.bbox())
    clear()
    draw(F,color='random',eltype='tet')
    PF['vol_model'] = F
Esempio n. 3
0
def center_surface():
    """Center the stl model."""
    if not check_surface():
        return
    updateGUI()
    nodes,elems = PF['old_surface'] = PF['surface']
    F = Formex(nodes.reshape((-1,1,3)))
    center = F.center()
    nodes = F.translate(-center).f
    PF['surface'] = nodes,elems
    clear()
    show_changes(PF['old_surface'],PF['surface'])
Esempio n. 4
0
def rotate_surface():
    """Rotate the stl model."""
    if not check_surface():
        return
    itemlist = [ [ 'axis',0], ['angle','0.0'] ] 
    res,accept = widgets.inputDialog(itemlist,'Rotation Parameters').getResult()
    if accept:
        updateGUI()
        print res
        nodes,elems = PF['old_surface'] = PF['surface']
        F = Formex(nodes.reshape((-1,1,3)))
        nodes = F.rotate(float(res[1][1]),int(res[0][1])).f
        PF['surface'] = nodes,elems
        clear()
        show_changes(PF['old_surface'],PF['surface'])
Esempio n. 5
0
def scale_surface():
    """Scale the stl model."""
    if not check_surface():
        return
    itemlist = [ [ 'X-scale',1.0], [ 'Y-scale',1.0], [ 'Z-scale',1.0] ] 
    res,accept = widgets.inputDialog(itemlist,'Scaling Parameters').getResult()
    if accept:
        updateGUI()
        scale = map(float,[r[1] for r in res])
        print scale
        nodes,elems = PF['old_surface'] = PF['surface']
        F = Formex(nodes.reshape((-1,1,3)))
        nodes = F.scale(scale).f
        PF['surface'] = nodes,elems
        clear()
        show_changes(PF['old_surface'],PF['surface'])
Esempio n. 6
0
def createGrid():
    _data_ = _name_ + 'createGrid_data'
    dia = Dialog(items=[
        _I('name', '__auto__'),
        _I('object type', choices=['Formex', 'Mesh', 'TriSurface']),
        _I('base', choices=base_patterns),
        _I('nx', 4),
        _I('ny', 2),
        _I('stepx', 1.),
        _I('stepy', 1.),
        _I('taper', 0),
        _I('bias', 0.),
    ])
    if _data_ in pf.PF:
        dia.updateData(pf.PF[_data_])
    res = dia.getResults()
    if res:
        pf.PF[_data_] = res
        name = res['name']
        if name == '__auto__':
            name = autoName(res['object type']).next()
        F = Formex(res['base']).replic2(n1=res['nx'],
                                        n2=res['ny'],
                                        t1=res['stepx'],
                                        t2=res['stepy'],
                                        bias=res['bias'],
                                        taper=res['taper'])
        F = convertFormex(F, res['object type'])
        export({name: F})
        selection.set([name])
        if res['object type'] == 'TriSurface':
            surface_menu.selection.set([name])
        selection.draw()
Esempio n. 7
0
    def readFormex(self, nelems, nplex, props, eltype, sep):
        """Read a Formex from a pyFormex geometry file.

        The coordinate array for nelems*nplex points is read from the file.
        If present, the property numbers for nelems elements are read.
        From the coords and props a Formex is created and returned.
        """
        ndim = 3
        f = readArray(self.fil, Float, (nelems, nplex, ndim), sep=sep)
        if props:
            p = readArray(self.fil, Int, (nelems, ), sep=sep)
        else:
            p = None
        return Formex(f, p, eltype)
Esempio n. 8
0
def inside(self, pts):
    """Test which of the points pts are inside the surface.

    Parameters:

    - `pts`: a (usually 1-plex) Formex or a data structure that can be used
      to initialize a Formex.

    Returns an integer array with the indices of the points that are
    inside the surface. The indices refer to the onedimensional list
    of points as obtained from pts.points().
    """
    from formex import Formex
    if not isinstance(pts, Formex):
        pts = Formex(pts)
    pts = Formex(pts)  #.asPoints()
    print(type(pts))

    # determine bbox of common space of surface and points
    bb = bboxIntersection(self, pts)
    if (bb[0] > bb[1]).any():
        # No bbox intersection: no points inside
        return array([], dtype=Int)

    # Limit the points to the common part
    # Add point numbers as property, to allow return of original numbers
    pts.setProp(arange(pts.nelems()))
    pts = pts.clip(testBbox(pts, bb))

    # Apply the gtsinside shooting algorithm in three directions
    ins = zeros((pts.nelems(), 3), dtype=bool)
    for i in range(3):
        dirs = roll(arange(3), -i)[1:]
        # clip the surface perpendicular to the shooting direction
        S = self.clip(testBbox(self, bb, dirs))
        # find inside points shooting in direction i
        ok = gtsinside(S, pts, dir=i)
        ins[ok, i] = True

    ok = where(ins.sum(axis=-1) > 1)[0]
    return pts.prop[ok]
Esempio n. 9
0
def inside(self,pts):
    """Test which of the points pts are inside the surface.

    Parameters:

    - `pts`: a (usually 1-plex) Formex or a data structure that can be used
      to initialize a Formex.

    Returns an integer array with the indices of the points that are
    inside the surface. The indices refer to the onedimensional list
    of points as obtained from pts.points().
    """
    from formex import Formex
    if not isinstance(pts,Formex):
        pts = Formex(pts)
    pts = Formex(pts)#.asPoints()
    print(type(pts))

    # determine bbox of common space of surface and points
    bb = bboxIntersection(self,pts)
    if (bb[0] > bb[1]).any():
        # No bbox intersection: no points inside
        return array([],dtype=Int)

    # Limit the points to the common part
    # Add point numbers as property, to allow return of original numbers
    pts.setProp(arange(pts.nelems()))
    pts = pts.clip(testBbox(pts,bb))

    # Apply the gtsinside shooting algorithm in three directions
    ins = zeros((pts.nelems(),3),dtype=bool)
    for i in range(3):
        dirs = roll(arange(3),-i)[1:]
        # clip the surface perpendicular to the shooting direction
        S = self.clip(testBbox(self,bb,dirs))
        # find inside points shooting in direction i
        ok = gtsinside(S,pts,dir=i)
        ins[ok,i] = True

    ok = where(ins.sum(axis=-1) > 1)[0]
    return pts.prop[ok]
Esempio n. 10
0
def draw(F,
         view=None,bbox=None,
         color='prop',colormap=None,alpha=0.5,
         mode=None,linewidth=None,shrink=None,marksize=None,
         wait=True,clear=None,allviews=False):
    """Draw object(s) with specified settings and direct camera to it.

    The first argument is an object to be drawn. All other arguments are
    settings that influence how  the object is being drawn.

    F is either a Formex or a TriSurface object, or a name of such object
    (global or exported), or a list thereof.
    If F is a list, the draw() function is called repeatedly with each of
    ithe items of the list as first argument and with the remaining arguments
    unchanged.

    The remaining arguments are drawing options. If None, they are filled in
    from the current viewport drawing options.
    
    view is either the name of a defined view or 'last' or None.
    Predefined views are 'front','back','top','bottom','left','right','iso'.
    With view=None the camera settings remain unchanged (but might be changed
    interactively through the user interface). This may make the drawn object
    out of view!
    With view='last', the camera angles will be set to the same camera angles
    as in the last draw operation, undoing any interactive changes.
    The initial default view is 'front' (looking in the -z direction).

    bbox specifies the 3D volume at which the camera will be aimed (using the
    angles set by view). The camera position wil be set so that the volume
    comes in view using the current lens (default 45 degrees).
    bbox is a list of two points or compatible (array with shape (2,3)).
    Setting the bbox to a volume not enclosing the object may make the object
    invisible on the canvas.
    The special value bbox='auto' will use the bounding box of the objects
    getting drawn (object.bbox()), thus ensuring that the camera will focus
    on these objects.
    The special value bbox=None will use the bounding box of the previous
    drawing operation, thus ensuring that the camera's target volume remains
    unchanged.

    color,colormap,linewidth,alpha,marksize are passed to the
    creation of the 3D actor.

    shrink is a floating point shrink factor that will be applied to object
    before drawing it.

    If the Formex has properties and a color list is specified, then the
    the properties will be used as an index in the color list and each member
    will be drawn with the resulting color.
    If color is one color value, the whole Formex will be drawn with
    that color.
    Finally, if color=None is specified, the whole Formex is drawn in black.
    
    Each draw action activates a locking mechanism for the next draw action,
    which will only be allowed after drawdelay seconds have elapsed. This
    makes it easier to see subsequent images and is far more elegant that an
    explicit sleep() operation, because all script processing will continue
    up to the next drawing instruction.
    The value of drawdelay is set in the config, or 2 seconds by default.
    The user can disable the wait cycle for the next draw operation by
    specifying wait=False. Setting drawdelay=0 will disable the waiting
    mechanism for all subsequent draw statements (until set >0 again).
    """
    if type(F) == list:
        actor = []
        nowait = False
        for Fi in F:
            if Fi == F[-1]:
                nowait = wait
            actor.append(draw(Fi,view,bbox,
                              color,colormap,alpha,
                              mode,linewidth,shrink,marksize,
                              wait=nowait,clear=clear,allviews=allviews))
            if Fi == F[0]:
                clear = False
                view = None
        return actor

    if type(F) == str:
        F = named(F)
        if F is None:
            return None


    if isinstance(F,formex.Formex):
        pass
    elif isinstance(F,surface.TriSurface):
        pass
    elif isinstance(F,tools.Plane):
        pass
    elif hasattr(F,'toFormex'):
        F = F.toFormex()
    # keep this below trying the 'toFormex' !!!
    elif isinstance(F,coords.Coords):
        F = Formex(F)
    else:
        # Don't know how to draw this object
        raise RuntimeError,"draw() can not draw objects of type %s" % type(F)

    GD.GUI.drawlock.wait()

    if clear is None:
        clear = GD.canvas.options.get('clear',False)
    if clear:
        clear_canvas()

    if bbox is None:
        bbox = GD.canvas.options.get('bbox','auto')

    if view is not None and view != 'last':
        GD.debug("SETTING VIEW to %s" % view)
        setView(view)

    if shrink is None:
        shrink = GD.canvas.options.get('shrink',None)
 
    if marksize is None:
        marksize = GD.canvas.options.get('marksize',GD.cfg.get('marksize',5.0))
       
    # Create the colors
    if color == 'prop':
        if hasattr(F,'p'):
            color = F.p
        else:
            color = colors.black
    elif color == 'random':
        # create random colors
        color = numpy.random.random((F.nelems(),3),dtype=float32)

    GD.GUI.setBusy()
    if shrink is not None:
        #GD.debug("DRAWING WITH SHRINK = %s" % shrink)
        F = _shrink(F,shrink)
    try:
        if isinstance(F,formex.Formex):
            if F.nelems() == 0:
                return None
            actor = actors.FormexActor(F,color=color,colormap=colormap,alpha=alpha,mode=mode,linewidth=linewidth,marksize=marksize)
        elif isinstance(F,surface.TriSurface):
            if F.nelems() == 0:
                return None
            actor = actors.TriSurfaceActor(F,color=color,colormap=colormap,alpha=alpha,mode=mode,linewidth=linewidth)
        elif isinstance(F,tools.Plane):
            return drawPlane(F.point(),F.normal(),F.size())
        GD.canvas.addActor(actor)
        if view is not None or bbox not in [None,'last']:
            #GD.debug("CHANGING VIEW to %s" % view)
            if view == 'last':
                view = GD.canvas.options['view']
            if bbox == 'auto':
                bbox = F.bbox()
            #GD.debug("SET CAMERA TO: bbox=%s, view=%s" % (bbox,view))
            GD.canvas.setCamera(bbox,view)
            #setView(view)
        GD.canvas.update()
        GD.app.processEvents()
        #GD.debug("AUTOSAVE %s" % image.autoSaveOn())
        if image.autoSaveOn():
            image.saveNext()
        if wait: # make sure next drawing operation is retarded
            GD.GUI.drawlock.lock()
    finally:
        GD.GUI.setBusy(False)
    return actor
Esempio n. 11
0
 def toFormex(self):
     from formex import Formex
     x = stack([self.coords, roll(self.coords, -1, axis=0)], axis=1)
     return Formex(x)
Esempio n. 12
0
    def area(self):
        """Compute area inside a polygon.

        """
        from plugins.section2d import PlaneSection
        return PlaneSection(Formex(self.coords)).sectionChar()['A']