def analyzeRegions(frames, probabilityPacks, isGoodWindow): # Initialize frameCount = len(frames) performances = [] # Get for frameIndex, frame in enumerate(frames): # Load regionalPacks = filter(lambda x: point_process.isInsideRegion(x, frame), probabilityPacks) # Evaluate correctVector = [] for probabilityPack in regionalPacks: windowX, windowY, predictedLabel = probabilityPack[:3] actualLabel = True if isGoodWindow((windowX, windowY)) else False correctVector.append(predictedLabel == actualLabel) # Compute performance performances.append(sum(correctVector) / float(len(correctVector))) # Show feedback if frameIndex % 100 == 0: view.printPercentUpdate(frameIndex + 1, frameCount) view.printPercentFinal(frameCount) # Return return performances
def sampleWindows(targetWindowPath, region, location, parameterByName, options=None): # Get parameters exampleCountPerRegion = parameterByName['example count per region'] multispectralPixelShiftValue = parameterByName['multispectral pixel shift value'] shiftCount = parameterByName['shift count'] # Prepare regionFrames regionSet = region.getDataset() # regionDataset = region_store.load(region.path) regionFrames = regionDataset.getRegionFrames() regionFrameCount = len(regionFrames) # Prepare counts testRegionSet = region.getTestDataset() # testRegionDataset = region_store.load(regionInformation.getTestRegionPath()) testFractionPerRegion = regionInformation.getTestFractionPerRegion() # Load imageDataset imagePath = folderStore.getImagePath(regionInformation.getImageName()) imageInformation = image_store.Information(imagePath) multispectralImage = image_store.load(imageInformation.getMultispectralImagePath()) panchromaticImage = image_store.load(imageInformation.getPanchromaticImagePath()) # Load locations positiveGeoLocations, spatialReference = point_store.load(imageInformation.getPositiveLocationPath()) # Convert windowLengthInMeters = regionInformation.getWindowLengthInMeters() windowPixelDimensions = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) positivePixels = multispectralImage.convertGeoLocationsToPixelLocations(positiveGeoLocations) # Place examples exampleMachine = region_process.ExampleMachine(positivePixels, exampleCountPerRegion, testFractionPerRegion, testRegionDataset, windowPixelDimensions, multispectralPixelShiftValue, shiftCount) examplePacks = [] if options and not options.is_test: print 'Placing examples in %s regions for "%s"...' % (regionFrameCount, taskName) for regionFrame in regionFrames: examplePacks.append(exampleMachine.placeInFrame(regionFrame)) exampleCount = len(examplePacks) if exampleCount % 10 == 0: view.printPercentUpdate(exampleCount, regionFrameCount) view.printPercentFinal(regionFrameCount) exampleInformation = {} trainingPaths = [] testPaths = [] # Set targetWindowFolderPath = os.path.dirname(targetWindowPath) if options and not options.is_test: # For each exampleName, for exampleName in examplePacks[0].keys(): # Convert examplePixelLocations = sum((x[exampleName] for x in examplePacks), []) exampleGeoLocations = multispectralImage.convertPixelLocationsToGeoLocations(examplePixelLocations) examplePath = os.path.join(targetWindowFolderPath, exampleName) exampleLabel = 1 if 'positive' in exampleName else 0 # Save point_store.save(examplePath, exampleGeoLocations, spatialReference) exampleInformation[exampleName + ' count'] = len(examplePixelLocations) # Extract print 'Extracting %s windows for %s...' % (len(examplePixelLocations), exampleName) window_process.extract(examplePath, exampleGeoLocations, exampleLabel, windowLengthInMeters, multispectralImage, panchromaticImage) (testPaths if 'test' in exampleName else trainingPaths).append(examplePath) # Record information = { 'windows': { 'window length in meters': windowLengthInMeters, 'spatial reference': spatialReference, }, 'regions': { 'name': regionName, 'path': regionPath, 'count': regionFrameCount, }, 'examples': exampleInformation, } # Combine if options and not options.is_test: information['training set'] = sample_process.combineDatasets(sample_process.makeTrainingPath(targetWindowFolderPath), trainingPaths).getStatistics() information['test set'] = sample_process.combineDatasets(sample_process.makeTestPath(targetWindowFolderPath), testPaths).getStatistics() # Save information store.saveInformation(targetWindowPath, information)