def forward(self, x_enc_fine, x_enc_coarse, hx=None, teacher_prob=None, test_mode=False, effective_num_steps=None): x_enc = torch.cat([x_enc_coarse[..., :-1], x_enc_fine], dim=-1) x_enc = self.embedding(x_enc) output, _ = self.rnn(x_enc, hx=hx) if not test_mode: y_logits_coarse = F.log_softmax(self.coarse_action(output), dim=-1) y_logits_fine, y_lens_fine = self.fine_action(output) else: y_logits_coarse, y_logits_fine, y_lens_fine = [], [], [] batch_size, seq_len = x_enc.size(0), x_enc.size(1) for i in range(batch_size): y_ex_logits_coarse, y_ex_logits_fine, y_ex_lens_fine = [], [], [] steps = int(effective_num_steps[i].item()) step_hx = output[i:i + 1][:, steps - 1] y_step_logits_coarse = F.log_softmax( self.coarse_action(step_hx), dim=-1) y_step_logits_fine, y_step_lens_fine = self.fine_action( step_hx) x_coarse_cat = logit2one_hot(y_step_logits_coarse.detach()) x_fine_cat = logit2one_hot(y_step_logits_fine.detach()) if self.with_final_action: x_coarse_cat = x_coarse_cat[..., :-1] x_fine_cat = x_fine_cat[..., :-1] x_fine_num = x_enc_fine[i:i + 1, steps - 1, -1:] + y_step_lens_fine.detach() x_enc_step = torch.cat([x_coarse_cat, x_fine_cat, x_fine_num], dim=-1) for t in range(seq_len): y_step_logits_coarse, y_step_logits_fine, y_step_lens_fine, step_hx = \ self.single_step(x_enc_step, hx_step=step_hx) y_ex_logits_coarse.append(y_step_logits_coarse) y_ex_logits_fine.append(y_step_logits_fine) y_ex_lens_fine.append(y_step_lens_fine) x_coarse_cat = logit2one_hot(y_step_logits_coarse.detach()) x_fine_cat = logit2one_hot(y_step_logits_fine.detach()) if self.with_final_action: x_coarse_cat = x_coarse_cat[..., :-1] x_fine_cat = x_fine_cat[..., :-1] x_fine_num = x_enc_step[..., -1:] + y_step_lens_fine.detach() x_enc_step = torch.cat( [x_coarse_cat, x_fine_cat, x_fine_num], dim=-1) y_logits_coarse.append(torch.stack(y_ex_logits_coarse, dim=1)) y_logits_fine.append(torch.stack(y_ex_logits_fine, dim=1)) y_lens_fine.append(torch.stack(y_ex_lens_fine, dim=1)) y_logits_coarse = torch.cat(y_logits_coarse, dim=0) y_logits_fine = torch.cat(y_logits_fine, dim=0) y_lens_fine = torch.cat(y_lens_fine, dim=0) return y_logits_fine, y_lens_fine, y_logits_coarse
def predict_future_actions(model, input_tensors, fine_id_to_action, coarse_id_to_action, disable_parent_input, num_frames, maximum_prediction_length, observed_fine_actions, observed_coarse_actions, fine_action_to_id, coarse_action_to_id, scalers=None): x_enc_fine, x_enc_coarse, dx_enc, dx_enc_layer_zero, x_tra_fine, x_tra_coarse = input_tensors dx = [dx_enc, dx_enc_layer_zero] with torch.no_grad(): _, hx = model.encoder_net(x_enc_fine, x_enc_coarse, dx=dx, hx=None) hx_tra = [hl[0] for hl in hx] if isinstance(model.encoder_net.encoder_hmgru, HMLSTM) else hx (_, y_tra_coarse_rem_prop), _ = model.transition_net(x_tra_fine, x_tra_coarse, hx=hx_tra) coarse_la_id = torch.argmax(x_tra_coarse[..., :-2], dim=-1).item() coarse_la_label = coarse_id_to_action[coarse_la_id] y_tra_coarse_rem_prop = maybe_denormalise(y_tra_coarse_rem_prop.cpu().numpy(), scaler=scalers.get('y_tra_coarse_scaler')) coarse_la_rem_len = round(y_tra_coarse_rem_prop.item() * num_frames) predicted_coarse_actions = [coarse_la_label] * coarse_la_rem_len predicted_coarse_steps = [(coarse_la_label, coarse_la_rem_len)] # Generate input tensors again. new_observed_coarse_actions = observed_coarse_actions + predicted_coarse_actions input_seq_len = x_enc_fine.size(1) input_tensors = generate_test_datum(observed_fine_actions, new_observed_coarse_actions, input_seq_len=input_seq_len, fine_action_to_id=fine_action_to_id, coarse_action_to_id=coarse_action_to_id, disable_parent_input=disable_parent_input, num_frames=num_frames, scalers=scalers, coarse_is_complete=True) input_tensors = [nan_to_value(tensor, value=0.0) for tensor in input_tensors] input_tensors = numpy_to_torch(*input_tensors, device=x_enc_fine.device) x_enc_fine, x_enc_coarse, dx_enc, dx_enc_layer_zero, x_tra_fine, x_tra_coarse = input_tensors dx = [dx_enc, dx_enc_layer_zero] with torch.no_grad(): _, hx, hxs = model.encoder_net(x_enc_fine, x_enc_coarse, dx=dx, hx=None, return_all_hidden_states=True) hx_tra = [hl[0] for hl in hx] if isinstance(model.encoder_net.encoder_hmgru, HMLSTM) else hx (y_tra_fine_rem_rel_prop, _), hx_tra = model.transition_net(x_tra_fine, x_tra_coarse, hx=hx_tra) try: if not model.disable_transition_layer: if isinstance(model.encoder_net.encoder_hmgru, HMLSTM): for i, hl in enumerate(hx_tra): hx[i][0] = hl else: hx = hx_tra hxs[0] = torch.cat([hxs[0], hx_tra[0].unsqueeze(1)], dim=1) hxs[1] = torch.cat([hxs[1], hx_tra[1].unsqueeze(1)], dim=1) except AttributeError: if isinstance(model.encoder_net.encoder_hmgru, HMLSTM): for i, hl in enumerate(hx_tra): hx[i][0] = hl else: hx = hx_tra hxs[0] = torch.cat([hxs[0], hx_tra[0].unsqueeze(1)], dim=1) hxs[1] = torch.cat([hxs[1], hx_tra[1].unsqueeze(1)], dim=1) num_coarse_actions = len(coarse_action_to_id) if disable_parent_input: fine_la_id = torch.argmax(x_tra_fine[..., :-2], dim=-1).item() else: fine_la_id = torch.argmax(x_tra_fine[..., num_coarse_actions:-2], dim=-1).item() fine_la_label = fine_id_to_action[fine_la_id] y_tra_fine_rem_rel_prop = maybe_denormalise(y_tra_fine_rem_rel_prop.cpu().numpy(), scaler=scalers.get('y_tra_fine_scaler')) coarse_tra_len_prop = x_tra_coarse[..., -1].item() + y_tra_coarse_rem_prop.item() fine_la_rem_len = round(y_tra_fine_rem_rel_prop.item() * coarse_tra_len_prop * num_frames) predicted_fine_actions = [fine_la_label] * fine_la_rem_len predicted_fine_steps = [(fine_la_label, fine_la_rem_len)] # Decoder dtype, device = x_enc_fine.dtype, x_enc_fine.device x_dec_cat_coarse = x_tra_coarse[..., :-2] x_dec_num_coarse = x_tra_coarse[..., -2:-1] + torch.tensor(y_tra_coarse_rem_prop, dtype=dtype, device=device) x_dec_coarse = torch.cat([x_dec_cat_coarse, x_dec_num_coarse], dim=-1) x_dec_cat_fine = x_tra_fine[..., :-2] acc_fine_proportion = x_tra_fine[..., -2:-1] + torch.tensor(y_tra_fine_rem_rel_prop, dtype=dtype, device=device) acc_fine_proportion = acc_fine_proportion.item() x_dec_num_fine = torch.tensor([[acc_fine_proportion]], dtype=dtype, device=device) x_dec_fine = torch.cat([x_dec_cat_fine, x_dec_num_fine], dim=-1) coarse_la_obs_prop = maybe_denormalise(x_tra_coarse[..., -1:].cpu().numpy(), scaler=scalers.get('x_tra_coarse_scaler')) coarse_la_prop = coarse_la_obs_prop.item() + y_tra_coarse_rem_prop.item() d_fine, d_fines = 0.0, [] decoder_net, output_seq_len = model.decoder_net, model.decoder_net.output_seq_len coarse_exceed_first_time, total_coarse_length = True, 0 with torch.no_grad(): for t in range(output_seq_len): # Predict if model.model_v2: x_dec_fine_ = x_dec_fine[0] hx_ = [hx[0][0], hx[1][0]] y_dec_fine_logits, y_dec_fine_rel_prop, hx_fine = decoder_net.single_step_fine(x_dec_fine_, d_fine, hx_) hx[0] = hx_fine.unsqueeze(0) else: y_dec_fine_logits, y_dec_fine_rel_prop, hx[0] = \ decoder_net.single_step_fine(x_dec_fine, d_fine, hx) # Process Prediction fine_na_label, _ = next_action_info(y_dec_fine_logits, y_dec_fine_rel_prop, fine_id_to_action, num_frames) if acc_fine_proportion >= 1.0 or fine_na_label is None: acc_fine_proportion, d_fine = 0.0, 1.0 if model.model_v2: x_dec_coarse_ = x_dec_coarse[0] hx_ = [hx[0][0], hx[1][0]] y_dec_coarse_logits, y_dec_coarse_prop, hx_coarse = \ decoder_net.single_step_coarse(x_dec_coarse_, hx_) hx[1] = hx_coarse.unsqueeze(0) else: y_dec_coarse_logits, y_dec_coarse_prop, hx[1] = \ decoder_net.single_step_coarse(x_dec_coarse, d_fine, hx) y_dec_coarse_prop = maybe_denormalise(y_dec_coarse_prop.cpu().numpy(), scaler=scalers.get('y_dec_coarse_scaler')) coarse_na_label, coarse_na_len = next_action_info(y_dec_coarse_logits, y_dec_coarse_prop, coarse_id_to_action, num_frames) if coarse_na_label is None: break predicted_coarse_actions += [coarse_na_label] * coarse_na_len predicted_coarse_steps.append((coarse_na_label, coarse_na_len)) coarse_la_prop = y_dec_coarse_prop.item() x_dec_cat_coarse = logit2one_hot(y_dec_coarse_logits) if model.with_final_action: x_dec_cat_coarse = x_dec_cat_coarse[..., :-1] x_dec_coarse[..., :-1] = x_dec_cat_coarse x_dec_coarse[..., -1] += coarse_la_prop predicted_fine_steps.append((None, None)) if model.model_v3 and decoder_net.input_soft_parent: # Prepare x_dec_cat_coarse for fine steps if model.with_final_action: x_dec_cat_coarse = torch.softmax(y_dec_coarse_logits[..., :-1], dim=-1) else: x_dec_cat_coarse = torch.softmax(y_dec_coarse_logits, dim=-1) else: y_dec_fine_rel_prop = maybe_denormalise(y_dec_fine_rel_prop.cpu().numpy(), scaler=scalers.get('y_dec_fine_scaler')) excess = 0.0 fine_na_label, fine_na_len = next_action_info(y_dec_fine_logits, y_dec_fine_rel_prop - excess, fine_id_to_action, num_frames, parent_la_prop=coarse_la_prop) predicted_fine_actions += [fine_na_label] * fine_na_len predicted_fine_steps.append((fine_na_label, fine_na_len)) acc_fine_proportion += y_dec_fine_rel_prop.item() predicted_coarse_steps.append((None, None)) d_fine = 0.0 # Post-process d_fines.append(d_fine) if isinstance(model.encoder_net.encoder_hmgru, HMLSTM): hxs[0] = torch.cat([hxs[0], hx[0][0].unsqueeze(1)], dim=1) hxs[1] = torch.cat([hxs[1], hx[1][0].unsqueeze(1)], dim=1) else: hxs[0] = torch.cat([hxs[0], hx[0].unsqueeze(1)], dim=1) hxs[1] = torch.cat([hxs[1], hx[1].unsqueeze(1)], dim=1) x_dec_cat_fine = logit2one_hot(y_dec_fine_logits) if model.with_final_action: x_dec_cat_fine = x_dec_cat_fine[..., :-1] x_dec_cat_fine = x_dec_cat_fine * float(acc_fine_proportion > 0.0) if not disable_parent_input: x_dec_cat_fine = torch.cat([x_dec_cat_coarse, x_dec_cat_fine], dim=-1) x_dec_num_fine = torch.tensor([[acc_fine_proportion]], dtype=dtype, device=device) x_dec_fine = torch.cat([x_dec_cat_fine, x_dec_num_fine], dim=-1) coarse_exceed = len(predicted_coarse_actions) >= maximum_prediction_length fine_exceed = len(predicted_fine_actions) >= maximum_prediction_length if coarse_exceed and fine_exceed: break if coarse_exceed: if coarse_exceed_first_time: coarse_exceed_first_time = False total_coarse_length = len(predicted_coarse_actions) elif len(predicted_coarse_actions) > total_coarse_length: predicted_coarse_steps = predicted_coarse_steps[:-1] predicted_fine_steps = predicted_fine_steps[:-1] break if model.with_final_action: fine_steps = [(None, None)] + predicted_fine_steps coarse_steps = predicted_coarse_steps[:1] + [(None, None)] + predicted_coarse_steps[1:] coarse_steps = maybe_rebalance_steps(coarse_steps, maximum_prediction_length) predicted_fine_steps, predicted_coarse_steps = fix_steps(fine_steps, coarse_steps) predicted_fine_actions = actions_from_steps(predicted_fine_steps) predicted_coarse_actions = actions_from_steps(predicted_coarse_steps) predicted_actions = predicted_fine_actions, predicted_coarse_actions predicted_steps = predicted_fine_steps, predicted_coarse_steps return predicted_actions, predicted_steps, d_fines