Esempio n. 1
0
def test_FracRidgeRegressor_predict(nn, pp, bb, fit_intercept, jit):
    X, y, coef_ols, pred_ols = make_data(nn, pp, bb, fit_intercept)
    fracs = np.arange(.1, 1.1, .1)
    FR = FracRidgeRegressor(fracs=fracs, fit_intercept=fit_intercept, jit=jit)
    FR.fit(X, y)
    pred_fr = FR.predict(X)
    assert np.allclose(pred_fr[:, -1, ...], pred_ols, atol=10e-3)
Esempio n. 2
0
def test_fracridge_singleton_target(nn, pp, fit_intercept, fracs,
                                    y_is_a_single_column_matrix):
    # Sometimes we want to have just one target, and this should work for either a vector y or single-column matrix y,
    # See: https://github.com/nrdg/fracridge/issues/39
    bb = 1

    if fracs is None:
        fracs = np.arange(.1, 1.1, .1)

    X, y, _, pred_ols = make_data(nn, pp, bb, fit_intercept=fit_intercept)
    if y_is_a_single_column_matrix:  # expand y from a vector to a one-column matrix
        y = np.expand_dims(y, axis=-1)
        pred_ols = np.expand_dims(pred_ols,
                                  -1)  # do the same for the ols prediction
    # else, y remains a vector

    FR = FracRidgeRegressor(fracs=fracs, fit_intercept=fit_intercept)
    FR.fit(X, y)
    pred_fr = FR.predict(X)
    if hasattr(
            fracs, "__len__"
    ):  # if fracs is a a vector, extract the 1.0 fraction coefficient column (which should be similar to the OLS solution)
        pred_fr = pred_fr[:, np.asarray(fracs) == 1.0, ...].squeeze(1)

    assert np.allclose(pred_fr, pred_ols, atol=10e-3)
    assert np.array_equal(y.shape,
                          pred_fr.shape)  # predictions should be shaped like y
Esempio n. 3
0
def test_v_fracs(nn, pp, bb, frac):
    X, y, coef_ols, _ = make_data(nn, pp, bb)
    FR = FracRidgeRegressor(fracs=frac)
    FR.fit(X, y)
    assert np.all(
        np.abs(frac -
               vec_len(FR.coef_, axis=0) / vec_len(coef_ols, axis=0)) < 0.01)
Esempio n. 4
0
def test_FracRidge_singleton_frac():
    X = np.array([[1.64644051], [2.1455681]])
    y = np.array([1., 2.])
    fracs = 0.1
    FR = FracRidgeRegressor(fracs=fracs)
    FR.fit(X, y)
    pred_fr = FR.predict(X)
    assert pred_fr.shape == y.shape
Esempio n. 5
0
def test_fracridge_single_regressor(nn, bb, fit_intercept):
    # Sometimes we want to have just one regressor
    # See: https://github.com/nrdg/fracridge/issues/24
    pp = 1
    X, y, _, pred_ols = make_data(nn, pp, bb, fit_intercept=fit_intercept)
    fracs = np.arange(.1, 1.1, .1)
    FR = FracRidgeRegressor(fracs=fracs, fit_intercept=fit_intercept)
    FR.fit(X, y)
    pred_fr = FR.predict(X).squeeze()
    assert np.allclose(pred_fr[:, -1, ...], pred_ols, atol=10e-3)
Esempio n. 6
0
def test_FracRidgeRegressorCV(nn, pp, bb, fit_intercept, jit):
    X, y, _, _ = make_data(nn, pp, bb, fit_intercept)
    fracs = np.arange(.1, 1.1, .1)
    FRCV = FracRidgeRegressorCV(fit_intercept=fit_intercept, jit=jit)
    FRCV.fit(X, y, frac_grid=fracs)

    FR = FracRidgeRegressor(fracs=FRCV.best_frac_, fit_intercept=fit_intercept)
    FR.fit(X, y)
    assert np.allclose(FR.coef_, FRCV.coef_, atol=10e-3)
    RR = Ridge(alpha=FRCV.alpha_, fit_intercept=fit_intercept, solver='svd')
    RR.fit(X, y)
    # The coefficients in the sklearn object are transposed relative to
    # our conventions:
    assert np.allclose(RR.coef_.T, FRCV.coef_, atol=10e-3)
Esempio n. 7
0
def test_v_ols(nn, pp, bb, fit_intercept):
    X, y, coef_ols, _ = make_data(nn, pp, bb)
    fracs = np.arange(.1, 1.1, .1)
    FR = FracRidgeRegressor(fracs=fracs, fit_intercept=fit_intercept)
    FR.fit(X, y)
    assert np.allclose(FR.coef_[:, -1, ...], coef_ols, atol=10e-3)
Esempio n. 8
0
def test_FracRidge_estimator():
    check_estimator(FracRidgeRegressor())
    check_estimator(FracRidgeRegressorCV())
Esempio n. 9
0
 def __init__(self, fracs=None, fit_intercept=False, normalize=False,
              copy_X=True, tol=1e-10, jit=True):
     FracRidgeRegressor.__init__(
         self, fracs=fracs, fit_intercept=False, normalize=False,
         copy_X=True, tol=tol, jit=True)
for aa in range(len(rr_alphas)):
    RR = Ridge(alpha=rr_alphas[aa], fit_intercept=True)
    RR.fit(X, y)
    rr_coefs[:, aa] = RR.coef_
    rr_pred[:, aa] = cross_val_predict(RR, X, y)

##########################################################################
# In contrast, FRR takes as inputs fractions, rather than arbitrarily-chosen
# values of alpha. The alphas that are generated are selected to produce
# solutions whos fractional L2-norm relative to the L2-norm of the
# unregularized solution are these values. Here too, cross-validated
# predictions are generated:

fracs = np.linspace(0, 1, n_alphas)
FR = FracRidgeRegressor(fracs=fracs, fit_intercept=True)
FR.fit(X, y)
fr_pred = cross_val_predict(FR, X, y)

##########################################################################
# We plot the results. First, the FRR coefficients as a function of requested
# fractions and then the RR coefficient as a function of the requested
# log-spaced alpha:

fig, ax = plt.subplots(1, 2)
ax[0].plot(fracs, FR.coef_.T)
ylims = ax[0].get_ylim()
ax[0].vlines(fracs, ylims[0], ylims[1], linewidth=0.5, color='gray')
ax[0].set_ylim(*ylims)
ax[1].plot(np.log(rr_alphas[::-1]), rr_coefs.T)
ylims = ax[1].get_ylim()
Esempio n. 11
0
import numpy as np
from fracridge import (fracridge, vec_len, FracRidgeRegressor,
                       FracRidgeRegressorCV)
from sklearn.linear_model import Ridge
import pytest
from sklearn.utils.estimator_checks import parametrize_with_checks


@parametrize_with_checks([FracRidgeRegressor(), FracRidgeRegressorCV()])
def test_sklearn_compatible_estimator(estimator, check):
    check(estimator)


def run_fracridge(X, y, fracs, jit):
    fracridge(X, y, fracs=fracs, jit=jit)


@pytest.mark.parametrize("nn, pp", [(1000, 10), (10, 100), (284, 50)])
@pytest.mark.parametrize("bb", [(1), (2), (1000)])
@pytest.mark.parametrize("jit", [True, False])
def test_benchmark_fracridge(nn, pp, bb, jit, benchmark):
    X, y, _, _ = make_data(nn, pp, bb)
    fracs = np.arange(.1, 1.1, .1)
    benchmark(run_fracridge, X, y, fracs, jit)


def make_data(nn, pp, bb, fit_intercept=False):
    np.random.seed(1)
    X = np.random.randn(nn, pp)
    y = np.random.randn(nn, bb).squeeze()
    if fit_intercept: