Esempio n. 1
0
    def test__smoothingGoodEnoughCheck(self):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_softMarginAdditionalLoops=0,
            test_weightsEpsilon=1.0,
            test_smoothingEndCheckType='wgsum')

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())
        smoothing.countWeights = 1
        a = 2.0
        b = 1.5

        ut.testCmpPandas(
            smoothing._smoothingGoodEnoughCheck(
                abs(a - b), smoothingMetadata=smoothingMetadata), 'bool',
            False)
        ut.testCmpPandas(
            smoothing._smoothingGoodEnoughCheck(
                abs(a - b), smoothingMetadata=smoothingMetadata), 'bool', True)
        b = 3.1
        ut.testCmpPandas(
            smoothing._smoothingGoodEnoughCheck(
                abs(a - b), smoothingMetadata=smoothingMetadata), 'bool',
            False)
Esempio n. 2
0
    def test__sumWeightsToArrayStd(self):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_weightIter=dc.DefaultWeightDecay(2),
            test_smoothingEndCheckType='std',
            test_epsilon=1.0,
            test_weightsEpsilon=1.0,
            test_hardEpsilon=1e-9,
            test_softMarginAdditionalLoops=0,
            test_lossContainer=3,
            test_lossContainerDelayedStartAt=1,
            test_weightsArraySize=2)

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())

        self.helperEpoch.epochNumber = 3
        self.dataMetadata.epoch = 4
        self.helper.loss = torch.Tensor([1.0])
        smoothing(helperEpoch=self.helperEpoch,
                  helper=self.helper,
                  model=self.model,
                  dataMetadata=self.dataMetadata,
                  modelMetadata=None,
                  metadata=self.metadata,
                  smoothingMetadata=smoothingMetadata)
        wg = smoothing.__getSmoothedWeights__(
            smoothingMetadata=smoothingMetadata, metadata=self.metadata)
        std = smoothing._sumWeightsToArrayStd(wg)
        ut.testCmpPandas(std.item(), 'std', dc.ConfigClass.STD_NAN)

        second_weights = {
            'linear1.weight': [[11., 11., 11.]],
            'linear1.bias': [13.],
            'linear2.weight': [[11.], [11.], [11.]],
            'linear2.bias': [13., 13., 13.]
        }

        self.model.setConstWeights(weight=11, bias=13)
        smoothing(helperEpoch=self.helperEpoch,
                  helper=self.helper,
                  model=self.model,
                  dataMetadata=self.dataMetadata,
                  modelMetadata=None,
                  metadata=self.metadata,
                  smoothingMetadata=smoothingMetadata)
        wg = smoothing.__getSmoothedWeights__(
            smoothingMetadata=smoothingMetadata, metadata=self.metadata)
        std = smoothing._sumWeightsToArrayStd(wg)
        ut.testCmpPandas(
            std.item(), 'std',
            torch.std(
                torch.Tensor([
                    (11 - 9.0) * 6 + (13 - 11.0) * 4,
                    (9.0 - 5) * 6 + (11.0 - 7) * 4
                ])).item())  # smoothed weights = saved weights -> 0
Esempio n. 3
0
    def test_calcMean(self):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_weightIter=dc.DefaultWeightDecay(2),
            test_smoothingEndCheckType='wgsum')

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())

        weights = dict(self.model.named_parameters())
        self.compareDictToNumpy(iterator=weights, numpyDict=init_weights)

        smoothing.calcMean(model=self.model,
                           smoothingMetadata=smoothingMetadata)
        smoothedWg = smoothing.weightsArray.array
        weights = dict(self.model.named_parameters())
        i = smoothedWg[0]
        self.compareDictToNumpy(iterator=weights, numpyDict=init_weights)
        self.compareDictToNumpy(iterator=i, numpyDict=init_weights)

        #########

        second_weights = {
            'linear1.weight': [[11., 11., 11.]],
            'linear1.bias': [13.],
            'linear2.weight': [[11.], [11.], [11.]],
            'linear2.bias': [13., 13., 13.]
        }

        self.model.setConstWeights(weight=11, bias=13)  # change model weights
        smoothing.calcMean(model=self.model,
                           smoothingMetadata=smoothingMetadata)
        weights = dict(self.model.named_parameters())
        i = smoothedWg[1]
        self.compareDictToNumpy(iterator=i, numpyDict=second_weights)
        self.compareDictToNumpy(iterator=weights, numpyDict=second_weights)

        ########

        third_weights = {
            'linear1.weight': [[9., 9., 9.]],
            'linear1.bias': [11.],
            'linear2.weight': [[9.], [9.], [9.]],
            'linear2.bias': [11., 11., 11.]
        }

        smoothing.countWeights = 2
        sm_weights = smoothing.__getSmoothedWeights__(
            smoothingMetadata=smoothingMetadata, metadata=None)
        weights = dict(self.model.named_parameters())
        self.compareDictToNumpy(iterator=sm_weights, numpyDict=third_weights)
        self.compareDictToNumpy(iterator=weights, numpyDict=second_weights)
Esempio n. 4
0
    def test_experiment_weightedMean_MNIST_predefModel_alexnet(self):
        with sf.test_mode():
            modelName = "alexnet"

            metadata = sf.Metadata(testFlag=True,
                                   trainFlag=True,
                                   debugInfo=True)
            dataMetadata = dc.DefaultData_Metadata(
                pin_memoryTest=True,
                pin_memoryTrain=True,
                epoch=1,
                test_howOftenPrintTrain=2,
                howOftenPrintTrain=3,
                resizeTo=Test_RunExperiment.MNIST_RESIZE)
            optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9}

            obj = models.alexnet()
            smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
                test_weightIter=dc.DefaultWeightDecay(1.05),
                test_device='cpu',
                test_epsilon=1e-5,
                test_hardEpsilon=1e-7,
                test_weightsEpsilon=1e-6,
                test_weightSumContainerSize=3,
                test_weightSumContainerSizeStartAt=1,
                test_lossContainer=20,
                test_lossContainerDelayedStartAt=10)
            modelMetadata = dc.DefaultModel_Metadata(
                lossFuncDataDict={},
                optimizerDataDict=optimizerDataDict,
                device='cuda:0')

            data = dc.DefaultDataMNIST(dataMetadata)
            smoothing = dc.DefaultSmoothingOscilationWeightedMean(
                smoothingMetadata)
            model = dc.DefaultModelPredef(obj=obj,
                                          modelMetadata=modelMetadata,
                                          name=modelName)

            optimizer = optim.SGD(model.getNNModelModule().parameters(),
                                  lr=optimizerDataDict['learning_rate'],
                                  momentum=optimizerDataDict['momentum'])
            loss_fn = nn.CrossEntropyLoss()

            stat = dc.run(metadataObj=metadata,
                          data=data,
                          model=model,
                          smoothing=smoothing,
                          optimizer=optimizer,
                          lossFunc=loss_fn,
                          modelMetadata=modelMetadata,
                          dataMetadata=dataMetadata,
                          smoothingMetadata=smoothingMetadata)
Esempio n. 5
0
    def test__sumAllWeights(self):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_smoothingEndCheckType='wgsum')

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())
        smoothing.countWeights = 1

        smoothing.calcMean(model=self.model,
                           smoothingMetadata=smoothingMetadata)
        sumWg = smoothing._sumAllWeights(smoothingMetadata=smoothingMetadata,
                                         metadata=self.metadata)
        ut.testCmpPandas(sumWg, 'weight_sum', 58.0)
if (__name__ == '__main__'):
    #sf.StaticData.TEST_MODE = True

    metadata = sf.Metadata(testFlag=True, trainFlag=True, debugInfo=True)
    dataMetadata = dc.DefaultData_Metadata(pin_memoryTest=True,
                                           pin_memoryTrain=True,
                                           epoch=1,
                                           fromGrayToRGB=False)
    loop = 5

    smoothingMetadata = None
    if (sf.test_mode.isActive()):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_weightIter=dc.DefaultWeightDecay(1.05),
            test_epsilon=1e-5,
            test_hardEpsilon=1e-7,
            test_weightsEpsilon=1e-6)
    else:
        smoothingMetadata = dc.DefaultSmoothingOscilationWeightedMean_Metadata(
            weightIter=dc.DefaultWeightDecay(1.05),
            epsilon=1e-4,
            hardEpsilon=1e-7,
            weightsEpsilon=1e-6)

    #####################
    types = ('predefModel', 'CIFAR10', 'weightedMean')
    try:
        stats = []
        rootFolder = sf.Output.getTimeStr() + ''.join(x + "_"
                                                      for x in types) + "set"
Esempio n. 7
0
    def test__getSmoothedWeights__(self):
        smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_weightIter=dc.DefaultWeightDecay(2),
            test_smoothingEndCheckType='wgsum',
            test_epsilon=1.0,
            test_weightsEpsilon=1.0,
            test_hardEpsilon=1e-9,
            test_softMarginAdditionalLoops=0,
            test_lossContainer=3,
            test_lossContainerDelayedStartAt=1,
            test_weightsArraySize=2)

        self.helperEpoch.maxTrainTotalNumber = 1000

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())
        self.helper.loss = torch.Tensor([1.0])

        smoothing(helperEpoch=self.helperEpoch,
                  helper=self.helper,
                  model=self.model,
                  dataMetadata=self.dataMetadata,
                  modelMetadata=None,
                  metadata=self.metadata,
                  smoothingMetadata=smoothingMetadata)
        self.compareDictToNumpy(
            smoothing.__getSmoothedWeights__(
                smoothingMetadata=smoothingMetadata, metadata=self.metadata),
            {})
        smoothing(helperEpoch=self.helperEpoch,
                  helper=self.helper,
                  model=self.model,
                  dataMetadata=self.dataMetadata,
                  modelMetadata=None,
                  metadata=self.metadata,
                  smoothingMetadata=smoothingMetadata)  # aby zapisać wagi
        self.compareDictToNumpy(
            smoothing.__getSmoothedWeights__(
                smoothingMetadata=smoothingMetadata, metadata=self.metadata),
            init_weights)

        self.model.setConstWeights(weight=17, bias=19)
        w = (17 + 5 / 2) / 1.5
        b = (19 + 7 / 2) / 1.5
        self.checkSmoothedWeights(smoothing=smoothing,
                                  helperEpoch=self.helperEpoch,
                                  dataMetadata=self.dataMetadata,
                                  smoothingMetadata=smoothingMetadata,
                                  helper=self.helper,
                                  model=self.model,
                                  metadata=self.metadata,
                                  w=w,
                                  b=b)

        self.model.setConstWeights(weight=23, bias=27)
        w = (23 + 17 / 2) / 1.5
        b = (27 + 19 / 2) / 1.5
        self.checkSmoothedWeights(smoothing=smoothing,
                                  helperEpoch=self.helperEpoch,
                                  dataMetadata=self.dataMetadata,
                                  smoothingMetadata=smoothingMetadata,
                                  helper=self.helper,
                                  model=self.model,
                                  metadata=self.metadata,
                                  w=w,
                                  b=b)

        self.model.setConstWeights(weight=31, bias=37)
        w = (31 + 23 / 2) / 1.5
        b = (37 + 27 / 2) / 1.5
        self.checkSmoothedWeights(smoothing=smoothing,
                                  helperEpoch=self.helperEpoch,
                                  dataMetadata=self.dataMetadata,
                                  smoothingMetadata=smoothingMetadata,
                                  helper=self.helper,
                                  model=self.model,
                                  metadata=self.metadata,
                                  w=w,
                                  b=b)
Esempio n. 8
0
    def test__isSmoothingGoodEnough__(self):
        self.smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
            test_epsilon=1.0,
            test_hardEpsilon=1e-9,
            test_smoothingEndCheckType='wgsum',
            test_weightsEpsilon=2.0,
            test_softMarginAdditionalLoops=0,
            test_lossContainer=3,
            test_lossContainerDelayedStartAt=1,
            test_weightsArraySize=3)

        smoothing = dc.DefaultSmoothingOscilationWeightedMean(
            smoothingMetadata=self.smoothingMetadata)
        smoothing.__setDictionary__(
            smoothingMetadata=self.smoothingMetadata,
            dictionary=self.model.getNNModelModule().named_parameters())
        self.helper.loss = torch.Tensor([1.0])

        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=1.0,
            avgKLoss=0,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)
        self.helper.loss = torch.Tensor([0.5])
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=1.5 / 2,
            avgKLoss=1.0,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=2 / 3,
            avgKLoss=1.5 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)

        self.helper.loss = torch.Tensor([1.5])
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=2.5 / 3,
            avgKLoss=1 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=3.5 / 3,
            avgKLoss=2 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=4.5 / 3,
            avgKLoss=3 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)

        self.helper.loss = torch.Tensor([1.3])
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=4.3 / 3,
            avgKLoss=3 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=False)
        self.checkOscilation__isSmoothingGoodEnough__(
            avgLoss=4.1 / 3,
            avgKLoss=2.8 / 2,
            helperEpoch=self.helperEpoch,
            dataMetadata=self.dataMetadata,
            smoothing=smoothing,
            smoothingMetadata=self.smoothingMetadata,
            helper=self.helper,
            model=self.model,
            metadata=self.metadata,
            booleanIsGood=True)