Esempio n. 1
0
    def iter_alpha(i, surveys=surveys, parallel=None):
        alpha = ALPHAS[i]
        pop = CosmicPopulation.complex(SIZE)
        pop.set_dist(model='vol_co', z_max=1.0, alpha=alpha)
        pop.set_lum(model='powerlaw', low=1e40, high=1e45, power=-1)
        pop.generate()

        for li in LIS:
            pop.set_lum(model='powerlaw', low=1e40, high=1e45, power=li)
            pop.gen_lum()

            for si in SIS:
                pop.set_si(model='constant', value=si)
                pop.gen_si()

                pop.name = f'complex_alpha_{alpha}_lum_{li}_si_{si}'

                for survey in surveys:
                    surv_pop = SurveyPopulation(pop, survey)
                    print(surv_pop.name)
                    surv_pop.save()

                    sr = surv_pop.source_rate
                    rate = sr.det / sr.days
                    mask = (df.alpha == alpha) & (df.li == li) & (df.si == si)

                    if parallel is not None:
                        i = df[mask].index
                        j = SURVEY_NAMES.index(survey.name)
                        parallel[i, j] = rate
                    else:
                        df.loc[mask, survey.name] = rate
Esempio n. 2
0
def get_data():
    """Get the population data."""
    # Construct population
    pop = CosmicPopulation(n_srcs=SIZE, n_days=1, name='standard_candle')
    pop.set_dist(model='sfr', z_max=2.5, H_0=67.74, W_m=0.3089, W_v=0.6911)
    pop.set_dm_host(model='constant', value=100)
    pop.set_dm_igm(model='ioka', slope=1000, std=None)
    pop.set_dm_mw(model='ne2001')
    pop.set_emission_range(low=10e6, high=10e9)
    pop.set_lum(model='constant', value=1e36)
    pop.set_w(model='constant', value=1.)
    pop.set_si(model='constant', value=0)
    pop.generate()

    # Survey population
    pops = {}
    for b in BEAMPATTERNS:
        pprint(f'Surveying with {b} beampattern')
        n_s = 0
        bp = b
        if b.startswith('airy'):
            bp, n_s = b.split('-')
            n_s = int(n_s)

        survey = Survey(name='perfect-small')
        # Prevent beam from getting larger than the sky
        survey.set_beam(model=bp, n_sidelobes=n_s, size=10)
        surv_pop = SurveyPopulation(pop, survey)
        print(surv_pop.source_rate)
        pops[b] = surv_pop

    return pops
Esempio n. 3
0
 def loop_surveys(self, cosmic_pop, z_max):
     for survey in self.surveys:
         surv_pop = SurveyPopulation(cosmic_pop, survey)
         surv_pop.z_max = z_max
         rate = surv_pop.source_rate.det
         n = surv_pop.n_sources()
         errs = [np.abs(e - n) for e in poisson_interval(n)]
         d = {
             'survey': survey.name,
             'pop': cosmic_pop.name,
             'rate': rate,
             'err_low': errs[0],
             'err_high': errs[1],
             'z_max': z_max
         }
         self.data.append(d)
Esempio n. 4
0
        def iter_alpha(i):
            alpha = alphas[i]
            pop = CosmicPopulation.complex(self.pop_size)

            pop.set_dist(model='vol_co', z_max=1.0, alpha=alpha)
            pop.set_lum(model='constant', value=1)

            if not np.isnan(w_mean):
                pop.set_w(model='lognormal', mean=w_mean, std=w_std)
            if not np.isnan(dm_igm_slope):
                pop.set_dm_igm(model='ioka', slope=dm_igm_slope)
                pop.set_dm_host(model='constant', value=dm_host)

            pop.generate()

            for si in sis:
                pop.set_si(model='constant', value=si)
                pop.gen_si()

                for li in lis:
                    pop.set_lum(model='powerlaw',
                                low=1e40,
                                high=1e45,
                                power=li)

                    if not np.isnan(lum_min):
                        pop.set_lum(model='powerlaw',
                                    low=lum_min,
                                    high=lum_max,
                                    index=li)

                    pop.gen_lum()

                    for survey in self.surveys:
                        surv_pop = SurveyPopulation(pop, survey)

                        # Get unique identifier
                        mask = (self.so.df.par_set == 1)
                        mask &= (self.so.df.run == run)
                        mask &= (self.so.df.alpha == alpha)
                        mask &= (self.so.df.si == si)
                        mask &= (self.so.df.li == li)
                        mask &= (self.so.df.survey == survey.name)
                        uuid = self.so.df[mask].uuid.iloc[0]
                        surv_pop.name = f'mc/run_{run}/{uuid}'
                        surv_pop.save()
Esempio n. 5
0
        def adapt_pop(e):
            w_mean, w_std = e
            t_pop = deepcopy(pop)
            t_pop.set_w(model='lognormal', mean=w_mean, std=w_std)
            t_pop.gen_w()

            for survey in self.surveys:
                surv_pop = SurveyPopulation(t_pop, survey)

                # Get unique identifier
                mask = (self.so.df.par_set == 3)
                mask &= (self.so.df.run == run)
                mask &= (self.so.df.run == run)
                mask &= (self.so.df.w_mean == w_mean)
                mask &= (self.so.df.w_std == w_std)
                mask &= (self.so.df.survey == survey.name)
                uuid = self.so.df[mask].uuid.iloc[0]
                surv_pop.name = f'mc/run_{run}/{uuid}'
                surv_pop.save()
Esempio n. 6
0
def get_survey_pop(pop, survey, overwrite=False):
    """Quickly get survey populations.

    Args:
        pop (CosmicPopulation): Population to survey
        survey (Survey): Survey to use
        overwrite (bool): Check whether a population has already
            been run. If overwrite is true, it will always make a new
            instance.

    Returns:
        pop: Desired population.

    """
    observe = True

    # Check where a possible population would be located
    path = ''
    if isinstance(pop, str):
        name = f'{pop}_{survey.name}'
        path = paths.populations() + name + '.p'

    # Check if the file exists
    if not overwrite:
        if os.path.isfile(path):
            observe = False
            return unpickle(path)

    # If all else fails observe again
    if observe:

        if isinstance(pop, str):
            m = f'No survey population at {path}, yet no surveying requested'
            raise ValueError(m)

        surv_pop = SurveyPopulation(pop, survey)
        surv_pop.name = f'{pop.name}_{survey.name}'
        surv_pop.save()
        return surv_pop
Esempio n. 7
0
        def adapt_pop(e):
            dm_igm_slope, dm_host = e
            t_pop = deepcopy(pop)
            t_pop.set_dm_igm(model='ioka', slope=dm_igm_slope)
            t_pop.gen_dm_igm()
            t_pop.set_dm_host(model='constant', value=dm_host)
            t_pop.gen_dm_host()
            t_pop.frbs.dm = t_pop.frbs.dm_mw + t_pop.frbs.dm_igm
            t_pop.frbs.dm += t_pop.frbs.dm_host

            for survey in self.surveys:
                surv_pop = SurveyPopulation(t_pop, survey)

                # Get unique identifier
                mask = (self.so.df.par_set == 4)
                mask &= (self.so.df.run == run)
                mask &= (self.so.df.dm_igm_slope == dm_igm_slope)
                mask &= (self.so.df.dm_host == dm_host)
                mask &= (self.so.df.survey == survey.name)
                uuid = self.so.df[mask].uuid.iloc[0]
                surv_pop.name = f'mc/run_{run}/{uuid}'
                surv_pop.save()
Esempio n. 8
0
def get_local(make=MAKE, size=SIZE):

    # Construct populations
    pop = get_cosmic_pop('alpha_simple',
                         size,
                         load=True,
                         overwrite=make,
                         alpha=-1.5)

    # Survey populations
    survey = Survey(name='perfect', gain_pattern='perfect', n_sidelobes=0.5)
    surv_pop = SurveyPopulation(pop, survey)

    return surv_pop.frbs.fluence
Esempio n. 9
0
        def adapt_pop(e):
            li, lum_min, lum_max = e
            if lum_max < lum_min:
                return
            t_pop = deepcopy(pop)
            t_pop.set_lum(model='powerlaw',
                          low=lum_min,
                          high=lum_max,
                          power=li)
            t_pop.gen_lum()

            for survey in self.surveys:
                surv_pop = SurveyPopulation(t_pop, survey)

                # Get unique identifier
                mask = (self.so.df.par_set == 2)
                mask &= (self.so.df.run == run)
                mask &= (self.so.df.li == li)
                mask &= (self.so.df.lum_min == lum_min)
                mask &= (self.so.df.lum_max == lum_max)
                mask &= (self.so.df.survey == survey.name)
                uuid = self.so.df[mask].uuid.iloc[0]
                surv_pop.name = f'mc/run_{run}/{uuid}'
                surv_pop.save()
Esempio n. 10
0
def get_further(gamma, make=MAKE, size=SIZE):
    """Construct populations going further out."""
    # Construct populations
    pop = get_cosmic_pop('gamma',
                         size,
                         load=True,
                         overwrite=make,
                         gamma=gamma)

    if gamma == 1:
        pop.frbs.lum_bol = np.ones_like(pop.frbs.lum_bol)*10**43

    # Survey populations
    survey = Survey(name='perfect', gain_pattern='perfect', n_sidelobes=0.5)
    surv_pop = SurveyPopulation(pop, survey)

    return surv_pop.frbs.fluence
Esempio n. 11
0
def get_data():
    """Get the population data."""
    # Construct population
    pop = CosmicPopulation(SIZE,
                           days=1,
                           name='standard_candle',
                           H_0=67.74,
                           W_m=0.3089,
                           W_v=0.6911,
                           dm_host_model='gaussian',
                           dm_host_mu=100,
                           dm_host_sigma=0,
                           dm_igm_index=1000,
                           dm_igm_sigma=None,
                           dm_mw_model='ne2001',
                           emission_range=[10e6, 10e9],
                           lum_range=[1e36, 1e36],
                           lum_index=0.,
                           n_model='sfr',
                           alpha=-1.5,
                           w_model='uniform',
                           w_range=[1., 1.],
                           w_mu=0.1,
                           w_sigma=0.,
                           si_mu=0.,
                           si_sigma=0.,
                           z_max=2.5)

    # Survey population
    pops = {}
    for b in BEAMPATTERNS:

        n_s = 0
        bp = b
        if b.startswith('airy'):
            bp, n_s = b.split('-')
            n_s = int(n_s)

        survey = Survey(name='perfect-small')
        survey.gain_pattern = bp
        survey.n_sidelobes = n_s
        surv_pop = SurveyPopulation(pop, survey)
        pops[b] = surv_pop

    return pops
Esempio n. 12
0
def get_further(gamma):
    """Construct populations going further out."""
    # Construct populations
    pop = CosmicPopulation.simple(SIZE)
    pop.si_mu = gamma
    pop.z_max = 2.5
    pop.lum_min = 10**42.5
    pop.lum_max = pop.lum_min
    pop.generate()

    if gamma == 1:
        pop.frbs.lum_bol = np.ones_like(pop.frbs.lum_bol)*10**43

    # Survey populations
    survey = Survey('perfect')
    surv_pop = SurveyPopulation(pop, survey)

    return surv_pop.frbs.s_peak
Esempio n. 13
0
def get_further(gamma):
    """Construct populations going further out."""
    # Construct populations
    pop = CosmicPopulation.simple(SIZE)
    pop.set_dist(z_max=2.5)
    pop.set_si(model='constant', value=gamma)
    pop.set_lum(model='constant', value=10**42.5)
    pop.generate()

    if gamma == 1:
        pop.set_lum(model='constant', value=10**43)
        pop.gen_lum()

    # Survey populations
    survey = Survey('perfect')
    surv_pop = SurveyPopulation(pop, survey)

    return surv_pop.frbs.s_peak
Esempio n. 14
0
def iter_run(i):
    r = CosmicPopulation(N_SRCS, n_days=N_DAYS, repeaters=True)
    r.set_dist(model='vol_co', z_max=1.0)
    r.set_dm_host(model='gauss', mean=100, std=200)
    r.set_dm_igm(model='ioka', slope=1000, std=None)
    r.set_dm(mw=True, igm=True, host=True)
    r.set_emission_range(low=100e6, high=10e9)
    r.set_lum(model='powerlaw',
              per_source='different',
              low=1e40,
              high=1e45,
              power=0)
    r.set_si(model='gauss', mean=-1.4, std=1)
    r.set_w(model='lognormal', per_source='different', mean=0.1, std=1)
    rate = lognormal(RATE, 2, N_SRCS)
    if LARGE_POP:
        rate = lognormal(RATE, 2, int(MAX_SIZE))  # Not completely kosher
    r.set_time(model='poisson', rate=rate)

    # Set up survey
    s = Survey('chime-frb', n_days=N_DAYS)
    s.set_beam(model='chime-frb')
    s.gen_pointings()  # To ensure each sub pop has the same pointings

    # Only generate FRBs in CHIME's survey region
    r.set_direction(model='uniform',
                    min_ra=s.ra_min,
                    max_ra=s.ra_max,
                    min_dec=s.dec_min,
                    max_dec=s.dec_max)

    if LARGE_POP:
        surv_pop = LargePopulation(r, s, max_size=MAX_SIZE).pops[0]
    else:
        r.generate()
        surv_pop = SurveyPopulation(r, s)
    surv_pop.name = f'cosmic_chime_longer_{i}'
    surv_pop.save()

    print(surv_pop.source_rate)
    print(surv_pop.burst_rate)
    pprint(f'i: {i}')
    pprint(f'# one-offs: {surv_pop.n_one_offs()}')
    pprint(f'# repeaters: {surv_pop.n_repeaters()}')
Esempio n. 15
0
def do_survey():

    # Construct population
    pop = get_cosmic_pop('standard_candle', SIZE, load=True, overwrite=MAKE)

    # Survey population
    pops = {}
    for b in BEAMPATTERNS:

        n_s = 0
        bp = b
        if b.startswith('airy'):
            bp, n_s = b.split('-')
            n_s = int(n_s)

        survey = Survey(name='perfect-small', gain_pattern=bp, n_sidelobes=n_s)
        surv_pop = SurveyPopulation(pop, survey)
        pops[b] = surv_pop

    return pops
Esempio n. 16
0
def get_local():
    """Construct a local population."""
    pop = CosmicPopulation.simple(SIZE, generate=True)
    survey = Survey('perfect')
    surv_pop = SurveyPopulation(pop, survey)
    return surv_pop.frbs.s_peak
Esempio n. 17
0
pop_obs = {}

if OBSERVE:

    for n in (35, 36, 37):

        if not CREATE:
            pop[n] = unpickle(f'sc-{n}')

        # Create Survey
        perfect = Survey('perfect-small',
                         gain_pattern='gaussian',
                         n_sidelobes=8)

        # Observe populations
        pop_obs[n] = SurveyPopulation(pop[n], perfect)
        pop_obs[n].name = f'sc-{n}-obs'
        pop_obs[n].rates()
        pop_obs[n].save()

else:
    for n in (35, 36, 37):
        pop_obs[n] = unpickle(f'sc-{n}-obs')

f, (ax1) = plt.subplots(1, 1)

for n in pop_obs:

    pop = pop_obs[n]
    limit = 1e-9
Esempio n. 18
0
pop.generate()

apertif = Survey('wsrt-apertif', n_days=N_DAYS)
apertif.set_beam(model='apertif_real')

if SCALE_TO == 'parkes-htru':
    htru = Survey('parkes-htru', n_days=N_DAYS)
    htru.set_beam(model='parkes')
if SCALE_TO == 'askap':
    askap = Survey('askap-fly', n_days=N_DAYS)
    askap.set_beam(model='gaussian', n_sidelobes=0.5)

days_per_frbs = []
for i in tqdm(range(2000), desc='Survey Run'):

    apertif_pop = SurveyPopulation(pop, apertif, mute=True)

    if SCALE_TO == 'parkes-htru':
        htru_pop = SurveyPopulation(pop, htru, mute=True)
        n_frbs_htru = EXPECTED['parkes-htru'][0]
        n_days_htru = EXPECTED['parkes-htru'][1]
        scaled_n_days = n_days_htru * (htru_pop.source_rate.det / n_frbs_htru)

    if SCALE_TO == 'askap':
        askap_pop = SurveyPopulation(pop, askap, mute=True)
        n_frbs_askap = EXPECTED['askap-fly'][0]
        n_days_askap = EXPECTED['askap-fly'][1]
        scaled_n_days = n_days_askap * (askap_pop.source_rate.det /
                                        n_frbs_askap)

    days_per_frb = scaled_n_days / apertif_pop.source_rate.det
Esempio n. 19
0
pop.set_emission_range(low=10e6, high=10e9)
pop.set_lum(model='constant', value=1e36)
pop.set_w(model='constant', value=1)
pop.set_si(model='constant', value=0)
pop.generate()

pop_obs = {}

survey = Survey('perfect-small')

for pattern in BEAMPATTERNS:

    survey.set_beam(model=pattern, n_sidelobes=0, size=90)

    # Observe populations
    pop_obs[pattern] = SurveyPopulation(pop, survey)
    pop_obs[pattern].name = f'obs-{pattern}'
    pop_obs[pattern].source_rate
    print(pop_obs[pattern].source_rate)
    pop_obs[pattern].save()

plot_aa_style()
f, (ax1) = plt.subplots(1, 1)

for p in BEAMPATTERNS:

    pop = pop_obs[p]
    limit = 1e-9

    s_peak = pop.frbs.s_peak
    dm_igm = pop.frbs.dm_igm
Esempio n. 20
0
 def survey_pop(self, pop):
     return SurveyPopulation(pop, self.survey)
Esempio n. 21
0
        r.set_emission_range(low=100e6, high=10e9)
        r.set_lum(model='powerlaw',
                  per_source='different',
                  low=1e40,
                  high=1e45,
                  power=0)
        r.set_si(model='gauss', mean=-1.4, std=1)
        r.set_w(model='lognormal', per_source='different', mean=0.1, std=1)
        rate = lognormal(ra, 1, int(n))
        r.set_time(model='poisson', rate=rate)

        # Set up survey
        s = Survey('chime-frb', n_days=N_DAYS)
        s.set_beam(model='chime-frb')

        # Only generate FRBs in CHIME's survey region
        r.set_direction(model='uniform',
                        min_ra=s.ra_min,
                        max_ra=s.ra_max,
                        min_dec=s.dec_min,
                        max_dec=s.dec_max)

        r.generate()

        surv_pop = SurveyPopulation(r, s)
        surv_pop.name = 'cosmic_chime'
        print(surv_pop.source_rate)
        print(surv_pop.burst_rate)
        pprint(f'# one-offs: {surv_pop.n_one_offs()}')
        pprint(f'# repeaters: {surv_pop.n_repeaters()}')
Esempio n. 22
0
"""Example of simulating a perfect survey."""
from frbpoppy import CosmicPopulation, Survey, SurveyPopulation, plot

# Generate an FRB population
cosmic_pop = CosmicPopulation.simple(1e4, generate=True)

# Setup a survey
survey = Survey('perfect')

# Observe the FRB population
survey_pop = SurveyPopulation(cosmic_pop, survey)

# Check the detection rates
print(survey_pop.rates())

# Note that due to redshift you won't see all bursts, as some will have
# redshifted out of the observing time. But no matter how faint, you'll see
# all bursts within the observing time

# Plot populations
plot(cosmic_pop, survey_pop, frbcat=False, mute=False)
Esempio n. 23
0
pop.set_w(model='constant', value=1)
pop.set_si(model='constant', value=0)
pop.generate()

pop_obs = {}

survey = Survey('perfect-small')
survey.beam_size_at_fwhm = 10.
survey.set_beam(model='airy')

for sidelobe in SIDELOBES:

    survey.set_beam(model='airy', n_sidelobes=sidelobe)

    # Observe populations
    pop_obs[sidelobe] = SurveyPopulation(pop, survey)
    pop_obs[sidelobe].name = f'obs-{sidelobe}'
    pop_obs[sidelobe].source_rate
    pop_obs[sidelobe].save()

plot_aa_style()
f, (ax1) = plt.subplots(1, 1)

for p in SIDELOBES:

    pop = pop_obs[p]
    limit = 1e-9

    s_peak = pop.frbs.s_peak
    dm_igm = pop.frbs.dm_igm
Esempio n. 24
0
"""Check the log N log F slope of a local population."""
import numpy as np
import matplotlib.pyplot as plt

from frbpoppy import CosmicPopulation, Survey, SurveyPopulation
from frbpoppy.population import unpickle

from tests.convenience import plot_aa_style, rel_path

MAKE = True

if MAKE:
    population = CosmicPopulation.simple(1e5, generate=True)
    survey = Survey('perfect')
    surv_pop = SurveyPopulation(population, survey)
    surv_pop.name = 'lognlogflocal'
    surv_pop.save()
else:
    surv_pop = unpickle('lognlogflocal')

# Get parameter
parms = surv_pop.frbs.fluence
min_p = min(parms)
max_p = max(parms)

# Bin up
min_f = np.log10(min(parms))
max_f = np.log10(max(parms))
log_bins = np.logspace(min_f, max_f, 50)
hist, edges = np.histogram(parms, bins=log_bins)
n_gt_s = np.cumsum(hist[::-1])[::-1]
        pop[si].generate()
        pop[si].save()
    else:
        pop[si] = copy.deepcopy(pop[min(SIS)])
        pop[si].frbs.si = np.random.normal(si, 0, int(n_tot))
        pop[si].name = f'si-{si}'
        pop[si].save()

pop_obs = {}

for si in SIS:

    perfect = Survey('perfect')

    # Observe populations
    pop_obs[si] = SurveyPopulation(pop[si], perfect)
    pop_obs[si].name = f'si-{si}-obs'
    pop_obs[si].rates()
    pop_obs[si].save()

plot_aa_style()

# Plot log N and alpha versus log S
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

min_s = 1e99
max_s = -1e99

for si in SIS:

    pop = pop_obs[si]
"""How to access frb population parameters."""
from frbpoppy import CosmicPopulation, Survey, SurveyPopulation

cosmic_pop = CosmicPopulation.simple(1e3, repeaters=True, generate=True)
dm = cosmic_pop.frbs.dm  # Get dispersion measure values

survey_pop = SurveyPopulation(cosmic_pop, Survey('perfect'))
survey_dm = survey_pop.frbs.dm  # Also works for SurveyPopulations

# Inbuilt functions help with detection rates
print(f'Number of sources: {survey_pop.n_sources()}')
print(f'Number of bursts: {survey_pop.n_bursts()}')
print(f'Number of repeating sources: {survey_pop.n_repeaters()}')
print(f'Number of one-off sources: {survey_pop.n_oneoffs()}')
Esempio n. 27
0
              power=0)
    r.set_si(model='gauss', mean=-1.4, std=1)
    r.set_w(model='lognormal', per_source='different', mean=0.1, std=1)
    rate = lognormal(RATE, 1, int(N_SRCS))
    r.set_time(model='poisson', rate=rate)

    # Only generate FRBs in CHIME's survey region
    r.set_direction(model='uniform',
                    min_ra=chime.ra_min,
                    max_ra=chime.ra_max,
                    min_dec=chime.dec_min,
                    max_dec=chime.dec_max)

    r.generate()

    surv_pop = SurveyPopulation(r, chime)
    surv_pop.save()
else:
    surv_pop = unpickle('cosmic_chime')

# Limit population to above S/N >= 10
mask = (surv_pop.frbs.snr >= 10)
surv_pop.frbs.apply(mask)

# Set up plot style
plot_aa_style(cols=1)
f, ax1 = plt.subplots(1, 1)

# See how fraction changes over time
n_pointings = chime.n_pointings
days = np.linspace(0, N_DAYS, (N_DAYS * n_pointings) + 1)
Esempio n. 28
0
"""Test perfect survey."""
import matplotlib.pyplot as plt

from frbpoppy import CosmicPopulation, Survey, SurveyPopulation
from convenience import hist, plot_aa_style, rel_path

cosmic_pop = CosmicPopulation.simple(1e4, generate=False)
cosmic_pop.z_max = 0.01
cosmic_pop.lum_min = 1e38
cosmic_pop.generate()

survey = Survey('perfect')

survey_pop = SurveyPopulation(cosmic_pop, survey)

plot_aa_style()
plt.rcParams["figure.figsize"] = (5.75373, 5.75373)

f, axes = plt.subplots(2, 2)
s = survey_pop.frbs
axes[0, 0].step(*hist(s.snr, bin_type='log'), where='mid')
axes[0, 0].set_title('SNR')

axes[1, 0].step(*hist(s.T_sys, bin_type='log'), where='mid')
axes[1, 0].set_title(r'T$_{\text{sys}}$')
axes[1, 0].set_xlim(1, 1e2)
axes[1, 0].set_ylim(1e-3, 1)

axes[0, 1].step(*hist(s.s_peak, bin_type='log'), where='mid')
axes[0, 1].set_title(r'S$_{\text{peak}}$')
axes[0, 1].set_xlim(1e-3, 1)
Esempio n. 29
0
            # Assign the values
            frbs = pop.frbs
            frbs.ra, frbs.dec = coords[0], coords[1]
            frbs.gl, frbs.gb = coords[2], coords[3]

            # Continue with generation
            pop.gen_gal_coords()
            pop.gen_dm()
            pop.gen_w()
            pop.gen_lum()
            pop.gen_si()
        else:
            pop.generate()

        surv_pop = SurveyPopulation(pop, survey, scale_by_area=False)
        surv_pop.source_rate.f_area = surv_f_area[name]
        surv_pop.source_rate.scale_by_area()
        # surv_pop.save()
        surv_pops.append(surv_pop)

else:
    surv_pops = []
    for name in SURVEYS:
        surv_pops.append(unpickle(f'optimal_{name}'))

# Start plot
plot_aa_style(cols=2)
plt.rcParams["figure.figsize"] = (3.556 * 3, 3.556)
fig, axes = plt.subplots(1, 3)
Esempio n. 30
0
from frbpoppy import unpickle, pprint

from tests.convenience import plot_aa_style, rel_path

MAKE = True
SURVEYS = ('parkes-htru', 'fast-crafts', 'puma-full', 'chord', 'ska1-low',
           'ska1-mid')

if MAKE:
    surv_pops = []
    pop = CosmicPopulation.complex(1e5, generate=False)
    pop.generate()

    for name in SURVEYS:
        survey = Survey(name)
        surv_pop = SurveyPopulation(pop, survey)
        surv_pop.save()
        surv_pops.append(surv_pop)
else:
    surv_pops = []
    for name in SURVEYS:
        surv_pops.append(unpickle(f'complex_{name}'))

# Start plot
plot_aa_style()
fig, ax1 = plt.subplots(1, 1)

# Fluence plot
ax1.set_xlabel('S/N')
ax1.set_xscale('log')
ax1.set_ylabel(r'\#(${>}\text{S/N}$)')