Esempio n. 1
0
def train(dt):
    if not 'dataset_dir' in dt:
        return "No dataset directory specified"
    for key in dt:
        d_a[key] = dt[key]

    d_a['freeze_dict']['input_checkpoint'] = os.path.join(
        d_a['train_dir'], 'model.ckpt-' + str(d_a['max_number_of_steps']))

    start = time.time()
    train_size, val_size, num_classes = convert_data.run(
        dt['dataset_dir'], d_a['dataset_name'], d_a['validation_percentage'],
        d_a['num_shards'])

    start_train = time.time()
    train_image_classifier_gen.main(
        d_a['train_dir'], d_a['num_clones'], d_a['clone_on_cpu'], train_size,
        val_size, num_classes, d_a['worker_replicas'],
        d_a['log_every_n_steps'], d_a['save_interval_secs'],
        d_a['weight_decay'], d_a['optimization'], d_a['learning_rate'],
        d_a['moving_average_decay'], d_a['dataset'],
        d_a['max_number_of_steps'], d_a['checkpoint'])
    end_train = time.time()

    export_inference_graph.main(d_a['export'], train_size, val_size,
                                num_classes)

    freeze_graph.main(d_a['freeze_dict'])
    end = time.time()

    train_time = end_train - start_train
    full_time = end - start
    rest = full_time - train_time

    return {'training_time': train_time, 'full_time': full_time, 'rest': rest}
Esempio n. 2
0
    'num_shards': args.num_shards,
    'train_dir': args.train_dir,
    'num_clones': args.num_clones,
    'worker_replicas': args.worker_replicas,
    'log_every_n_steps': args.log_every_n_steps,
    'save_interval_secs': args.save_interval_secs,
    'weight_decay': args.weight_decay,
    'moving_average_decay':args.moving_average_decay,
    'max_number_of_steps': args.max_number_of_steps,
    'clone_on_cpu': args.clone_on_cpu,
    'optimization': optimization,
    'learning_rate': learning_rate,
    'dataset': dataset,
    'checkpoint': checkpoint,
    'export': export,
    'freeze_dict': freeze_dict
  }

  with open('default_arguments.json', 'w') as js:
    json.dump(j, js)'''

    train_size, val_size, num_classes = convert_data.run(
        dataset_dir, dataset_name, validation_percentage, num_shards)
    train_image_classifier_gen.main(
        train_dir, num_clones, clone_on_cpu, train_size, val_size, num_classes,
        worker_replicas, log_every_n_steps, save_interval_secs, weight_decay,
        optimization, learning_rate, moving_average_decay, dataset,
        max_number_of_steps, checkpoint)
    export_inference_graph.main(export, train_size, val_size, num_classes)
    freeze_graph.main(freeze_dict)
 def test_freeze_graph(self):
     print('test_freeze_graph')
     argv = [self.pretrained_model, self.frozen_graph_filename]
     args = freeze_graph.parse_arguments(argv)
     freeze_graph.main(args)
 def test_freeze_graph(self):
     print('test_freeze_graph')
     argv = [ self.pretrained_model,
              self.frozen_graph_filename ]
     args = freeze_graph.parse_arguments(argv)
     freeze_graph.main(args)