Esempio n. 1
0
# Read from command line argument
transit_number = int(sys.argv[1])
print('Transit number: {0}'.format(transit_number))
lc = transits[transit_number]
lc.delete_outliers()
lc.subtract_polynomial_baseline(order=2, params=transit_params)
lc.fluxes += quarterly_maxes[lc.quarters[0]]
lc.fluxes /= quarterly_maxes[lc.quarters[0]]
lc.errors /= quarterly_maxes[lc.quarters[0]]

lc_output_path = os.path.join(output_dir,
                              'lc{0:03d}.txt'.format(transit_number))
np.savetxt(lc_output_path, np.vstack([lc.times.jd, lc.fluxes, lc.errors]).T)

# Subtract out a transit model
transit_model = generate_lc_depth(lc.times_jd, depth, transit_params)
residuals = lc.fluxes - transit_model

# Find peaks in the light curve residuals
best_fit_spot_params = peak_finder(lc.times.jd, residuals, lc.errors,
                                   transit_params, n_peaks=6, plots=False,
                                   verbose=True)
# This first spot model might miss the broadest spots
best_fit_gaussian_model = summed_gaussians(lc.times.jd,
                                           best_fit_spot_params)

# # Run again on the residuals to pick up big spots
# best_fit_spot_params = peak_finder(lc.times.jd, residuals - best_fit_gaussian_model, lc.errors,
#                                    transit_params, n_peaks=4, plots=True,
#                                    verbose=True, broaden_gaussian_factor=2)
Esempio n. 2
0
# Read from command line argument
transit_number = int(sys.argv[1])
lc = transits[transit_number]

lc.subtract_add_divide_without_outliers(params=hat11_params,
                                        quarterly_max=quarterly_maxes[lc.quarters[0]],
                                        plots=False)
lc_output_path = os.path.join(output_dir,
                              'lc{0:03d}.txt'.format(transit_number))
np.savetxt(lc_output_path, np.vstack([lc.times.jd, lc.fluxes, lc.errors]).T)

# Delete sharp outliers prior to peak-finding
lc.delete_outliers()

transit_model = generate_lc_depth(lc.times_jd, hat11_params.rp**2, hat11_params)
residuals = lc.fluxes - transit_model

# Find peaks in the light curve residuals
best_fit_spot_params = peak_finder(lc.times.jd, residuals, lc.errors,
                                   hat11_params, n_peaks=4, plots=False,
                                   verbose=True)
best_fit_gaussian_model = summed_gaussians(lc.times.jd,
                                           best_fit_spot_params)

# If spots are detected:
if best_fit_spot_params is not None:
    output_path = os.path.join(output_dir,
                               'chains{0:03d}.hdf5'.format(transit_number))
    sampler = run_emcee_seeded(lc, hat11_params, best_fit_spot_params,
                               n_steps=15000, n_walkers=150,
Esempio n. 3
0
kepler17_params = kepler17_params_db()

# Construct light curve object from the raw data
whole_lc = LightCurve.from_raw_fits(light_curve_paths, name='Kepler17')
transits = LightCurve(**whole_lc.mask_out_of_transit(kepler17_params)
                      ).get_transit_light_curves(kepler17_params)

delta_chi2 = {}

with ProgressBar(len(transits)) as bar:
    for i, lc in enumerate(transits):
        # Remove linear out-of-transit trend from transit
        lc.remove_linear_baseline(kepler17_params)

        # Subtract out a transit model
        transit_model = generate_lc_depth(lc.times_jd, depth, kepler17_params)
        residuals = lc.fluxes - transit_model

        # Find peaks in the light curve residuals
        best_fit_params = peak_finder(lc.times.jd, residuals, lc.errors,
                                      kepler17_params)
        best_fit_gaussian_model = summed_gaussians(lc.times.jd, best_fit_params)

        # Measure delta chi^2
        chi2_transit = np.sum((lc.fluxes - transit_model)**2 /
                              lc.errors**2)/len(lc.fluxes)

        if best_fit_params is not None:
            split_input_parameters = np.split(np.array(best_fit_params),
                                              len(best_fit_params)/3)
            delta_chi2[i] = []