def start_detectors(self): model_shape = (self.config.model.height, self.config.model.width) for name in self.config.cameras.keys(): self.detection_out_events[name] = mp.Event() try: self.detection_shms.append( mp.shared_memory.SharedMemory( name=name, create=True, size=self.config.model.height * self.config.model.width * 3)) except FileExistsError: self.detection_shms.append( mp.shared_memory.SharedMemory(name=name)) try: self.detection_shms.append( mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20 * 6 * 4)) except FileExistsError: self.detection_shms.append( mp.shared_memory.SharedMemory(name=f"out-{name}")) for name, detector in self.config.detectors.items(): if detector.type == 'cpu': self.detectors[name] = EdgeTPUProcess( name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads) if detector.type == 'edgetpu': self.detectors[name] = EdgeTPUProcess( name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detectors(self): model_shape = (self.config.model.height, self.config.model.width) for name in self.config.cameras.keys(): self.detection_out_events[name] = mp.Event() shm_in = mp.shared_memory.SharedMemory( name=name, create=True, size=self.config.model.height * self.config.model.width * 3, ) shm_out = mp.shared_memory.SharedMemory( name=f"out-{name}", create=True, size=20 * 6 * 4 ) self.detection_shms.append(shm_in) self.detection_shms.append(shm_out) for name, detector in self.config.detectors.items(): if detector.type == "cpu": self.detectors[name] = EdgeTPUProcess( name, self.detection_queue, self.detection_out_events, model_shape, "cpu", detector.num_threads, ) if detector.type == "edgetpu": self.detectors[name] = EdgeTPUProcess( name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads, )
def main(): # connect to mqtt and setup last will def on_connect(client, userdata, flags, rc): print("On connect called") if rc != 0: if rc == 3: print("MQTT Server unavailable") elif rc == 4: print("MQTT Bad username or password") elif rc == 5: print("MQTT Not authorized") else: print( "Unable to connect to MQTT: Connection refused. Error code: " + str(rc)) # publish a message to signal that the service is running client.publish(MQTT_TOPIC_PREFIX + '/available', 'online', retain=True) client = mqtt.Client(client_id=MQTT_CLIENT_ID) client.on_connect = on_connect client.will_set(MQTT_TOPIC_PREFIX + '/available', payload='offline', qos=1, retain=True) if not MQTT_USER is None: client.username_pw_set(MQTT_USER, password=MQTT_PASS) client.connect(MQTT_HOST, MQTT_PORT, 60) client.loop_start() plasma_process = start_plasma_store() ## # Setup config defaults for cameras ## for name, config in CONFIG['cameras'].items(): config['snapshots'] = { 'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True) } # Queue for cameras to push tracked objects to tracked_objects_queue = mp.SimpleQueue() # Queue for clip processing event_queue = mp.Queue() # Start the shared tflite process tflite_process = EdgeTPUProcess() # start the camera processes camera_processes = {} for name, config in CONFIG['cameras'].items(): # Merge the ffmpeg config with the global config ffmpeg = config.get('ffmpeg', {}) ffmpeg_input = get_ffmpeg_input(ffmpeg['input']) ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args']) ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args']) ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args']) ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args']) if config.get('save_clips', {}).get('enabled', False): ffmpeg_output_args = [ "-f", "segment", "-segment_time", "10", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime", "1", "-c", "copy", "-an", "-map", "0", f"/cache/{name}-%Y%m%d%H%M%S.mp4" ] + ffmpeg_output_args ffmpeg_cmd = (['ffmpeg'] + ffmpeg_global_args + ffmpeg_hwaccel_args + ffmpeg_input_args + ['-i', ffmpeg_input] + ffmpeg_output_args + ['pipe:']) if 'width' in config and 'height' in config: frame_shape = (config['height'], config['width'], 3) else: frame_shape = get_frame_shape(ffmpeg_input) frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] take_frame = config.get('take_frame', 1) detection_frame = mp.Value('d', 0.0) ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size) frame_queue = mp.SimpleQueue() camera_fps = EventsPerSecond() camera_fps.start() camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame) camera_capture.start() camera_processes[name] = { 'camera_fps': camera_fps, 'take_frame': take_frame, 'process_fps': mp.Value('d', 0.0), 'detection_fps': mp.Value('d', 0.0), 'detection_frame': detection_frame, 'read_start': mp.Value('d', 0.0), 'ffmpeg_process': ffmpeg_process, 'ffmpeg_cmd': ffmpeg_cmd, 'frame_queue': frame_queue, 'frame_shape': frame_shape, 'capture_thread': camera_capture } camera_process = mp.Process( target=track_camera, args=(name, config, GLOBAL_OBJECT_CONFIG, frame_queue, frame_shape, tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['process_fps'], camera_processes[name]['detection_fps'], camera_processes[name]['read_start'], camera_processes[name]['detection_frame'])) camera_process.daemon = True camera_processes[name]['process'] = camera_process for name, camera_process in camera_processes.items(): camera_process['process'].start() print( f"Camera_process started for {name}: {camera_process['process'].pid}" ) event_processor = EventProcessor(CONFIG['cameras'], camera_processes, '/cache', '/clips', event_queue) event_processor.start() object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue) object_processor.start() camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process) camera_watchdog.start() # create a flask app that encodes frames a mjpeg on demand app = Flask(__name__) log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) @app.route('/') def ishealthy(): # return a healh return "Frigate is running. Alive and healthy!" @app.route('/debug/stack') def processor_stack(): frame = sys._current_frames().get(object_processor.ident, None) if frame: return "<br>".join(traceback.format_stack(frame)), 200 else: return "no frame found", 200 @app.route('/debug/print_stack') def print_stack(): pid = int(request.args.get('pid', 0)) if pid == 0: return "missing pid", 200 else: os.kill(pid, signal.SIGUSR1) return "check logs", 200 @app.route('/debug/stats') def stats(): stats = {} total_detection_fps = 0 for name, camera_stats in camera_processes.items(): total_detection_fps += camera_stats['detection_fps'].value capture_thread = camera_stats['capture_thread'] stats[name] = { 'camera_fps': round(capture_thread.fps.eps(), 2), 'process_fps': round(camera_stats['process_fps'].value, 2), 'skipped_fps': round(capture_thread.skipped_fps.eps(), 2), 'detection_fps': round(camera_stats['detection_fps'].value, 2), 'read_start': camera_stats['read_start'].value, 'pid': camera_stats['process'].pid, 'ffmpeg_pid': camera_stats['ffmpeg_process'].pid, 'frame_info': { 'read': capture_thread.current_frame, 'detect': camera_stats['detection_frame'].value, 'process': object_processor.camera_data[name]['current_frame_time'] } } stats['coral'] = { 'fps': round(total_detection_fps, 2), 'inference_speed': round(tflite_process.avg_inference_speed.value * 1000, 2), 'detection_start': tflite_process.detection_start.value, 'pid': tflite_process.detect_process.pid } rc = camera_watchdog.plasma_process.poll() stats['plasma_store_rc'] = rc return jsonify(stats) @app.route('/<camera_name>/<label>/best.jpg') def best(camera_name, label): if camera_name in CONFIG['cameras']: best_frame = object_processor.get_best(camera_name, label) if best_frame is None: best_frame = np.zeros((720, 1280, 3), np.uint8) best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', best_frame) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 @app.route('/<camera_name>') def mjpeg_feed(camera_name): fps = int(request.args.get('fps', '3')) height = int(request.args.get('h', '360')) if camera_name in CONFIG['cameras']: # return a multipart response return Response( imagestream(camera_name, fps, height), mimetype='multipart/x-mixed-replace; boundary=frame') else: return "Camera named {} not found".format(camera_name), 404 def imagestream(camera_name, fps, height): while True: # max out at specified FPS time.sleep(1 / fps) frame = object_processor.get_current_frame(camera_name) if frame is None: frame = np.zeros((height, int(height * 16 / 9), 3), np.uint8) width = int(height * frame.shape[1] / frame.shape[0]) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') app.run(host='0.0.0.0', port=WEB_PORT, debug=False) object_processor.join() plasma_process.terminate()
def main(): stop_event = threading.Event() # connect to mqtt and setup last will def on_connect(client, userdata, flags, rc): print("On connect called") if rc != 0: if rc == 3: print ("MQTT Server unavailable") elif rc == 4: print ("MQTT Bad username or password") elif rc == 5: print ("MQTT Not authorized") else: print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc)) # publish a message to signal that the service is running client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True) if MQTT_ENABLED: client = mqtt.Client(client_id=MQTT_CLIENT_ID) client.on_connect = on_connect client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True) if not MQTT_USER is None: client.username_pw_set(MQTT_USER, password=MQTT_PASS) client.connect(MQTT_HOST, MQTT_PORT, 60) client.loop_start() else: client = None ## # Setup config defaults for cameras ## for name, config in CONFIG['cameras'].items(): config['snapshots'] = { 'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True), 'draw_zones': config.get('snapshots', {}).get('draw_zones', False), 'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True) } config['zones'] = config.get('zones', {}) # Queue for cameras to push tracked objects to tracked_objects_queue = mp.Queue(maxsize=len(CONFIG['cameras'].keys())*2) # Queue for clip processing event_queue = mp.Queue() # create the detection pipes and shms out_events = {} camera_shms = [] for name in CONFIG['cameras'].keys(): out_events[name] = mp.Event() shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3) shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4) camera_shms.append(shm_in) camera_shms.append(shm_out) detection_queue = mp.Queue() detectors = {} for name, detector in DETECTORS.items(): if detector['type'] == 'cpu': detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu') if detector['type'] == 'edgetpu': detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device']) # create the camera processes camera_process_info = {} for name, config in CONFIG['cameras'].items(): # Merge the ffmpeg config with the global config ffmpeg = config.get('ffmpeg', {}) ffmpeg_input = get_ffmpeg_input(ffmpeg['input']) ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args']) ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args']) ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args']) ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args']) if not config.get('fps') is None: ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args if config.get('save_clips', {}).get('enabled', False): ffmpeg_output_args = [ "-f", "segment", "-segment_time", "10", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime", "1", "-c", "copy", "-an", "-map", "0", f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4" ] + ffmpeg_output_args ffmpeg_cmd = (['ffmpeg'] + ffmpeg_global_args + ffmpeg_hwaccel_args + ffmpeg_input_args + ['-i', ffmpeg_input] + ffmpeg_output_args + ['pipe:']) config['ffmpeg_cmd'] = ffmpeg_cmd if 'width' in config and 'height' in config: frame_shape = (config['height'], config['width'], 3) else: frame_shape = get_frame_shape(ffmpeg_input) config['frame_shape'] = frame_shape config['take_frame'] = config.get('take_frame', 1) camera_process_info[name] = { 'camera_fps': mp.Value('d', 0.0), 'skipped_fps': mp.Value('d', 0.0), 'process_fps': mp.Value('d', 0.0), 'detection_fps': mp.Value('d', 0.0), 'detection_frame': mp.Value('d', 0.0), 'read_start': mp.Value('d', 0.0), 'ffmpeg_pid': mp.Value('i', 0), 'frame_queue': mp.Queue(maxsize=2) } # merge global object config into camera object config camera_objects_config = config.get('objects', {}) # get objects to track for camera objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person'])) # get object filters object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {})) config['objects'] = { 'track': objects_to_track, 'filters': object_filters } capture_process = mp.Process(target=capture_camera, args=(name, config, camera_process_info[name], stop_event)) capture_process.daemon = True camera_process_info[name]['capture_process'] = capture_process camera_process = mp.Process(target=track_camera, args=(name, config, detection_queue, out_events[name], tracked_objects_queue, camera_process_info[name], stop_event)) camera_process.daemon = True camera_process_info[name]['process'] = camera_process # start the camera_processes for name, camera_process in camera_process_info.items(): camera_process['capture_process'].start() print(f"Camera capture process started for {name}: {camera_process['capture_process'].pid}") camera_process['process'].start() print(f"Camera process started for {name}: {camera_process['process'].pid}") event_processor = EventProcessor(CONFIG, camera_process_info, CACHE_DIR, CLIPS_DIR, event_queue, stop_event) event_processor.start() object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, WEBHOOK_URL, tracked_objects_queue, event_queue, stop_event) object_processor.start() frigate_watchdog = FrigateWatchdog(camera_process_info, CONFIG['cameras'], detectors, detection_queue, out_events, tracked_objects_queue, stop_event) frigate_watchdog.start() def receiveSignal(signalNumber, frame): print('Received:', signalNumber) stop_event.set() event_processor.join() object_processor.join() frigate_watchdog.join() for detector in detectors.values(): detector.stop() for shm in camera_shms: shm.close() shm.unlink() sys.exit() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) # create a flask app that encodes frames a mjpeg on demand app = Flask(__name__) log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) @app.route('/') def ishealthy(): # return a healh return "Frigate is running. Alive and healthy!" @app.route('/debug/stack') def processor_stack(): frame = sys._current_frames().get(object_processor.ident, None) if frame: return "<br>".join(traceback.format_stack(frame)), 200 else: return "no frame found", 200 @app.route('/debug/print_stack') def print_stack(): pid = int(request.args.get('pid', 0)) if pid == 0: return "missing pid", 200 else: os.kill(pid, signal.SIGUSR1) return "check logs", 200 @app.route('/debug/stats') def stats(): stats = {} total_detection_fps = 0 for name, camera_stats in camera_process_info.items(): total_detection_fps += camera_stats['detection_fps'].value stats[name] = { 'camera_fps': round(camera_stats['camera_fps'].value, 2), 'process_fps': round(camera_stats['process_fps'].value, 2), 'skipped_fps': round(camera_stats['skipped_fps'].value, 2), 'detection_fps': round(camera_stats['detection_fps'].value, 2), 'pid': camera_stats['process'].pid, 'capture_pid': camera_stats['capture_process'].pid, 'frame_info': { 'detect': camera_stats['detection_frame'].value, 'process': object_processor.camera_data[name]['current_frame_time'] } } stats['detectors'] = {} for name, detector in detectors.items(): stats['detectors'][name] = { 'inference_speed': round(detector.avg_inference_speed.value*1000, 2), 'detection_start': detector.detection_start.value, 'pid': detector.detect_process.pid } stats['detection_fps'] = round(total_detection_fps, 2) return jsonify(stats) @app.route('/<camera_name>/<label>/best.jpg') def best(camera_name, label): if camera_name in CONFIG['cameras']: best_object = object_processor.get_best(camera_name, label) best_frame = best_object.get('frame') if best_frame is None: best_frame = np.zeros((720,1280,3), np.uint8) else: best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420) crop = bool(request.args.get('crop', 0, type=int)) if crop: region = best_object.get('region', [0,0,300,300]) best_frame = best_frame[region[1]:region[3], region[0]:region[2]] height = int(request.args.get('h', str(best_frame.shape[0]))) width = int(height*best_frame.shape[1]/best_frame.shape[0]) best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA) ret, jpg = cv2.imencode('.jpg', best_frame) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 @app.route('/<camera_name>') def mjpeg_feed(camera_name): fps = int(request.args.get('fps', '3')) height = int(request.args.get('h', '360')) if camera_name in CONFIG['cameras']: # return a multipart response return Response(imagestream(camera_name, fps, height), mimetype='multipart/x-mixed-replace; boundary=frame') else: return "Camera named {} not found".format(camera_name), 404 @app.route('/<camera_name>/latest.jpg') def latest_frame(camera_name): if camera_name in CONFIG['cameras']: # max out at specified FPS frame = object_processor.get_current_frame(camera_name) if frame is None: frame = np.zeros((720,1280,3), np.uint8) height = int(request.args.get('h', str(frame.shape[0]))) width = int(height*frame.shape[1]/frame.shape[0]) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA) ret, jpg = cv2.imencode('.jpg', frame) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 def imagestream(camera_name, fps, height): while True: # max out at specified FPS time.sleep(1/fps) frame = object_processor.get_current_frame(camera_name, draw=True) if frame is None: frame = np.zeros((height,int(height*16/9),3), np.uint8) width = int(height*frame.shape[1]/frame.shape[0]) frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR) ret, jpg = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') app.run(host='0.0.0.0', port=WEB_PORT, debug=False) object_processor.join()
start = datetime.datetime.now().timestamp() frame_times = [] for x in range(0, num_detections): start_frame = datetime.datetime.now().timestamp() detections = object_detector.detect(my_frame) frame_times.append(datetime.datetime.now().timestamp() - start_frame) duration = datetime.datetime.now().timestamp() - start print(f"{id} - Processed for {duration:.2f} seconds.") print( f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms" ) edgetpu_process = EdgeTPUProcess() # start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready) #### # Multiple camera processes #### camera_processes = [] for x in range(0, 10): camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue)) camera_process.daemon = True camera_processes.append(camera_process) start = datetime.datetime.now().timestamp()
def main(): # connect to mqtt and setup last will def on_connect(client, userdata, flags, rc): info("On connect called") if rc != 0: if rc == 3: info("MQTT Server unavailable") elif rc == 4: info("MQTT Bad username or password") elif rc == 5: info("MQTT Not authorized") else: info( "Unable to connect to MQTT: Connection refused. Error code: " + str(rc)) # publish a message to signal that the service is running client.publish(MQTT_TOPIC_PREFIX + '/available', 'online', retain=True) client = mqtt.Client(client_id=MQTT_CLIENT_ID) client.on_connect = on_connect client.will_set(MQTT_TOPIC_PREFIX + '/available', payload='offline', qos=1, retain=True) if not MQTT_USER is None: client.username_pw_set(MQTT_USER, password=MQTT_PASS) client.connect(MQTT_HOST, MQTT_PORT, 60) client.loop_start() # start plasma store plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma'] plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL) time.sleep(1) rc = plasma_process.poll() if rc is not None: raise RuntimeError("plasma_store exited unexpectedly with " "code %d" % (rc, )) # Queue for cameras to push tracked objects to tracked_objects_queue = mp.Queue() # Start the shared tflite process tflite_process = EdgeTPUProcess() # start the camera_conf processes camera_processes = {} object_processors = {} for camera_conf in CONFIG['cameras']: # info(camera_conf['platform']) # info(camera_conf) for source in camera_conf['source']: camera = EzvizClient(camera_conf, source['serial']) # info(camera.device_info) if not camera.device_info is None: name = camera.device_info['deviceName'] camera_processes[name] = { 'fps': mp.Value('d', float(camera_conf['fps'])), 'skipped_fps': mp.Value('d', 0.0), 'detection_fps': mp.Value('d', 0.0), 'camera': camera } camera_process = mp.Process( target=track_camera, args=(name, camera, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'])) camera_process.daemon = True camera_processes[name]['process'] = camera_process camera_processes[name]['process'].start() object_processors[name] = TrackedObjectProcessor( camera_conf, client, MQTT_TOPIC_PREFIX, tracked_objects_queue) object_processors[name].start() camera_watchdog = CameraWatchdog(camera_processes, camera_conf, tflite_process, tracked_objects_queue, object_processors) camera_watchdog.start() # # for source in camera_conf['source']: # if not 'serial' in source: # warn("serial is empty") # continue # # if camera_conf['platform'] == 'ezviz': # deviceSerial = str(source['serial']) # appKey = camera_conf['appKey'] # appSecret =camera_conf['appSecret'] # # ezclient = EzvizClient(deviceSerial,appKey,appSecret) # device_info = ezclient.get_device_info() # info("device_info={}".format(device_info)) # if device_info is None: # continue # # name = device_info['data']['deviceName'] # input = ezclient.get_device_live_address() # # else: # continue # # camera_processes[name] ={ # 'fps': mp.Value('d', float(camera_conf['fps'])), # 'skipped_fps': mp.Value('d', 0.0), # 'detection_fps': mp.Value('d', 0.0), # } # # camera_conf['input'] = input # # # camera_process = mp.Process(target=track_camera, args=(name, camera_conf, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, # tflite_process.detection_queue, tracked_objects_queue, # camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'])) # camera_process.daemon = True # camera_processes[name]['process'] = camera_process # # for name, camera_process in camera_processes.items(): # camera_process['process'].start() # info(f"Camera_process started for {name}: {camera_process['process'].pid}") # # object_processor = TrackedObjectProcessor(camera_conf, client, MQTT_TOPIC_PREFIX, tracked_objects_queue) # object_processor.start() # # # camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor) # # camera_watchdog.start() # # create a flask app that encodes frames a mjpeg on demand app = Flask(__name__) @app.route('/') def ishealthy(): # return a healh return "Frigate is running. Alive and healthy!" @app.route('/debug/stats') def stats(): stats = {} total_detection_fps = 0 for name, camera_stats in camera_processes.items(): total_detection_fps += camera_stats['detection_fps'].value stats[name] = { 'fps': round(camera_stats['fps'].value, 2), 'skipped_fps': round(camera_stats['skipped_fps'].value, 2), 'detection_fps': round(camera_stats['detection_fps'].value, 2) } stats['coral'] = { 'fps': round(total_detection_fps, 2), 'inference_speed': round(tflite_process.avg_inference_speed.value * 1000, 2), 'detection_queue': tflite_process.detection_queue.qsize(), 'detection_start': tflite_process.detection_start.value } rc = plasma_process.poll() stats['plasma_store_rc'] = rc stats['tracked_objects_queue'] = tracked_objects_queue.qsize() return jsonify(stats) @app.route('/<camera_name>/<label>/best.jpg') def best(camera_name, label): if camera_name in CONFIG['cameras']: best_frame = object_processors[camera_name].get_best( camera_name, label) if best_frame is None: best_frame = np.zeros((720, 1280, 3), np.uint8) best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', best_frame) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response else: return "Camera named {} not found".format(camera_name), 404 @app.route('/<camera_name>') def mjpeg_feed(camera_name): fps = int(request.args.get('fps', '3')) height = int(request.args.get('h', '360')) debug(camera_processes[camera_name]) if camera_name in camera_processes and camera_processes[camera_name]: # if camera_name in CONFIG['cameras']: # return a multipart response return Response( imagestream(camera_name, fps, height), mimetype='multipart/x-mixed-replace; boundary=frame') else: return "Camera named {} not found".format(camera_name), 404 def imagestream(camera_name, fps, height): while True: # max out at specified FPS time.sleep(1 / fps) frame = object_processors[camera_name].get_current_frame( camera_name) if frame is None: frame = np.zeros((height, int(height * 16 / 9), 3), np.uint8) frame = cv2.resize(frame, dsize=(int(height * 16 / 9), height), interpolation=cv2.INTER_LINEAR) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') app.run(host='0.0.0.0', port=WEB_PORT, debug=False) camera_watchdog.join() plasma_process.terminate()
# detection_queue = mp.Queue() # edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0') # start(1, 1000, edgetpu_process.detection_queue, event) # print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms") #### # Multiple camera processes #### camera_processes = [] events = {} for x in range(0, 10): events[str(x)] = mp.Event() detection_queue = mp.Queue() edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0') edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1') for x in range(0, 10): camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)])) camera_process.daemon = True camera_processes.append(camera_process) start_time = datetime.datetime.now().timestamp() for p in camera_processes: p.start() for p in camera_processes: p.join()