Esempio n. 1
0
    def start_detectors(self):
        model_shape = (self.config.model.height, self.config.model.width)
        for name in self.config.cameras.keys():
            self.detection_out_events[name] = mp.Event()

            try:
                self.detection_shms.append(
                    mp.shared_memory.SharedMemory(
                        name=name,
                        create=True,
                        size=self.config.model.height *
                        self.config.model.width * 3))
            except FileExistsError:
                self.detection_shms.append(
                    mp.shared_memory.SharedMemory(name=name))

            try:
                self.detection_shms.append(
                    mp.shared_memory.SharedMemory(name=f"out-{name}",
                                                  create=True,
                                                  size=20 * 6 * 4))
            except FileExistsError:
                self.detection_shms.append(
                    mp.shared_memory.SharedMemory(name=f"out-{name}"))

        for name, detector in self.config.detectors.items():
            if detector.type == 'cpu':
                self.detectors[name] = EdgeTPUProcess(
                    name, self.detection_queue, self.detection_out_events,
                    model_shape, 'cpu', detector.num_threads)
            if detector.type == 'edgetpu':
                self.detectors[name] = EdgeTPUProcess(
                    name, self.detection_queue, self.detection_out_events,
                    model_shape, detector.device, detector.num_threads)
Esempio n. 2
0
    def start_detectors(self):
        model_shape = (self.config.model.height, self.config.model.width)
        for name in self.config.cameras.keys():
            self.detection_out_events[name] = mp.Event()
            shm_in = mp.shared_memory.SharedMemory(
                name=name,
                create=True,
                size=self.config.model.height * self.config.model.width * 3,
            )
            shm_out = mp.shared_memory.SharedMemory(
                name=f"out-{name}", create=True, size=20 * 6 * 4
            )
            self.detection_shms.append(shm_in)
            self.detection_shms.append(shm_out)

        for name, detector in self.config.detectors.items():
            if detector.type == "cpu":
                self.detectors[name] = EdgeTPUProcess(
                    name,
                    self.detection_queue,
                    self.detection_out_events,
                    model_shape,
                    "cpu",
                    detector.num_threads,
                )
            if detector.type == "edgetpu":
                self.detectors[name] = EdgeTPUProcess(
                    name,
                    self.detection_queue,
                    self.detection_out_events,
                    model_shape,
                    detector.device,
                    detector.num_threads,
                )
Esempio n. 3
0
def main():
    # connect to mqtt and setup last will
    def on_connect(client, userdata, flags, rc):
        print("On connect called")
        if rc != 0:
            if rc == 3:
                print("MQTT Server unavailable")
            elif rc == 4:
                print("MQTT Bad username or password")
            elif rc == 5:
                print("MQTT Not authorized")
            else:
                print(
                    "Unable to connect to MQTT: Connection refused. Error code: "
                    + str(rc))
        # publish a message to signal that the service is running
        client.publish(MQTT_TOPIC_PREFIX + '/available', 'online', retain=True)

    client = mqtt.Client(client_id=MQTT_CLIENT_ID)
    client.on_connect = on_connect
    client.will_set(MQTT_TOPIC_PREFIX + '/available',
                    payload='offline',
                    qos=1,
                    retain=True)
    if not MQTT_USER is None:
        client.username_pw_set(MQTT_USER, password=MQTT_PASS)
    client.connect(MQTT_HOST, MQTT_PORT, 60)
    client.loop_start()

    plasma_process = start_plasma_store()

    ##
    # Setup config defaults for cameras
    ##
    for name, config in CONFIG['cameras'].items():
        config['snapshots'] = {
            'show_timestamp':
            config.get('snapshots', {}).get('show_timestamp', True)
        }

    # Queue for cameras to push tracked objects to
    tracked_objects_queue = mp.SimpleQueue()

    # Queue for clip processing
    event_queue = mp.Queue()

    # Start the shared tflite process
    tflite_process = EdgeTPUProcess()

    # start the camera processes
    camera_processes = {}
    for name, config in CONFIG['cameras'].items():
        # Merge the ffmpeg config with the global config
        ffmpeg = config.get('ffmpeg', {})
        ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
        ffmpeg_global_args = ffmpeg.get('global_args',
                                        FFMPEG_DEFAULT_CONFIG['global_args'])
        ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args',
                                         FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
        ffmpeg_input_args = ffmpeg.get('input_args',
                                       FFMPEG_DEFAULT_CONFIG['input_args'])
        ffmpeg_output_args = ffmpeg.get('output_args',
                                        FFMPEG_DEFAULT_CONFIG['output_args'])
        if config.get('save_clips', {}).get('enabled', False):
            ffmpeg_output_args = [
                "-f", "segment", "-segment_time", "10", "-segment_format",
                "mp4", "-reset_timestamps", "1", "-strftime", "1", "-c",
                "copy", "-an", "-map", "0", f"/cache/{name}-%Y%m%d%H%M%S.mp4"
            ] + ffmpeg_output_args
        ffmpeg_cmd = (['ffmpeg'] + ffmpeg_global_args + ffmpeg_hwaccel_args +
                      ffmpeg_input_args + ['-i', ffmpeg_input] +
                      ffmpeg_output_args + ['pipe:'])

        if 'width' in config and 'height' in config:
            frame_shape = (config['height'], config['width'], 3)
        else:
            frame_shape = get_frame_shape(ffmpeg_input)

        frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
        take_frame = config.get('take_frame', 1)

        detection_frame = mp.Value('d', 0.0)

        ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
        frame_queue = mp.SimpleQueue()
        camera_fps = EventsPerSecond()
        camera_fps.start()
        camera_capture = CameraCapture(name, ffmpeg_process, frame_shape,
                                       frame_queue, take_frame, camera_fps,
                                       detection_frame)
        camera_capture.start()

        camera_processes[name] = {
            'camera_fps': camera_fps,
            'take_frame': take_frame,
            'process_fps': mp.Value('d', 0.0),
            'detection_fps': mp.Value('d', 0.0),
            'detection_frame': detection_frame,
            'read_start': mp.Value('d', 0.0),
            'ffmpeg_process': ffmpeg_process,
            'ffmpeg_cmd': ffmpeg_cmd,
            'frame_queue': frame_queue,
            'frame_shape': frame_shape,
            'capture_thread': camera_capture
        }

        camera_process = mp.Process(
            target=track_camera,
            args=(name, config, GLOBAL_OBJECT_CONFIG, frame_queue, frame_shape,
                  tflite_process.detection_queue, tracked_objects_queue,
                  camera_processes[name]['process_fps'],
                  camera_processes[name]['detection_fps'],
                  camera_processes[name]['read_start'],
                  camera_processes[name]['detection_frame']))
        camera_process.daemon = True
        camera_processes[name]['process'] = camera_process

    for name, camera_process in camera_processes.items():
        camera_process['process'].start()
        print(
            f"Camera_process started for {name}: {camera_process['process'].pid}"
        )

    event_processor = EventProcessor(CONFIG['cameras'], camera_processes,
                                     '/cache', '/clips', event_queue)
    event_processor.start()

    object_processor = TrackedObjectProcessor(CONFIG['cameras'], client,
                                              MQTT_TOPIC_PREFIX,
                                              tracked_objects_queue,
                                              event_queue)
    object_processor.start()

    camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'],
                                     tflite_process, tracked_objects_queue,
                                     plasma_process)
    camera_watchdog.start()

    # create a flask app that encodes frames a mjpeg on demand
    app = Flask(__name__)
    log = logging.getLogger('werkzeug')
    log.setLevel(logging.ERROR)

    @app.route('/')
    def ishealthy():
        # return a healh
        return "Frigate is running. Alive and healthy!"

    @app.route('/debug/stack')
    def processor_stack():
        frame = sys._current_frames().get(object_processor.ident, None)
        if frame:
            return "<br>".join(traceback.format_stack(frame)), 200
        else:
            return "no frame found", 200

    @app.route('/debug/print_stack')
    def print_stack():
        pid = int(request.args.get('pid', 0))
        if pid == 0:
            return "missing pid", 200
        else:
            os.kill(pid, signal.SIGUSR1)
            return "check logs", 200

    @app.route('/debug/stats')
    def stats():
        stats = {}

        total_detection_fps = 0

        for name, camera_stats in camera_processes.items():
            total_detection_fps += camera_stats['detection_fps'].value
            capture_thread = camera_stats['capture_thread']
            stats[name] = {
                'camera_fps': round(capture_thread.fps.eps(), 2),
                'process_fps': round(camera_stats['process_fps'].value, 2),
                'skipped_fps': round(capture_thread.skipped_fps.eps(), 2),
                'detection_fps': round(camera_stats['detection_fps'].value, 2),
                'read_start': camera_stats['read_start'].value,
                'pid': camera_stats['process'].pid,
                'ffmpeg_pid': camera_stats['ffmpeg_process'].pid,
                'frame_info': {
                    'read':
                    capture_thread.current_frame,
                    'detect':
                    camera_stats['detection_frame'].value,
                    'process':
                    object_processor.camera_data[name]['current_frame_time']
                }
            }

        stats['coral'] = {
            'fps':
            round(total_detection_fps, 2),
            'inference_speed':
            round(tflite_process.avg_inference_speed.value * 1000, 2),
            'detection_start':
            tflite_process.detection_start.value,
            'pid':
            tflite_process.detect_process.pid
        }

        rc = camera_watchdog.plasma_process.poll()
        stats['plasma_store_rc'] = rc

        return jsonify(stats)

    @app.route('/<camera_name>/<label>/best.jpg')
    def best(camera_name, label):
        if camera_name in CONFIG['cameras']:
            best_frame = object_processor.get_best(camera_name, label)
            if best_frame is None:
                best_frame = np.zeros((720, 1280, 3), np.uint8)
            best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
            ret, jpg = cv2.imencode('.jpg', best_frame)
            response = make_response(jpg.tobytes())
            response.headers['Content-Type'] = 'image/jpg'
            return response
        else:
            return "Camera named {} not found".format(camera_name), 404

    @app.route('/<camera_name>')
    def mjpeg_feed(camera_name):
        fps = int(request.args.get('fps', '3'))
        height = int(request.args.get('h', '360'))
        if camera_name in CONFIG['cameras']:
            # return a multipart response
            return Response(
                imagestream(camera_name, fps, height),
                mimetype='multipart/x-mixed-replace; boundary=frame')
        else:
            return "Camera named {} not found".format(camera_name), 404

    def imagestream(camera_name, fps, height):
        while True:
            # max out at specified FPS
            time.sleep(1 / fps)
            frame = object_processor.get_current_frame(camera_name)
            if frame is None:
                frame = np.zeros((height, int(height * 16 / 9), 3), np.uint8)

            width = int(height * frame.shape[1] / frame.shape[0])

            frame = cv2.resize(frame,
                               dsize=(width, height),
                               interpolation=cv2.INTER_LINEAR)
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

            ret, jpg = cv2.imencode('.jpg', frame)
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() +
                   b'\r\n\r\n')

    app.run(host='0.0.0.0', port=WEB_PORT, debug=False)

    object_processor.join()

    plasma_process.terminate()
Esempio n. 4
0
def main():
    stop_event = threading.Event()
    # connect to mqtt and setup last will
    def on_connect(client, userdata, flags, rc):
        print("On connect called")
        if rc != 0:
            if rc == 3:
                print ("MQTT Server unavailable")
            elif rc == 4:
                print ("MQTT Bad username or password")
            elif rc == 5:
                print ("MQTT Not authorized")
            else:
                print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
        # publish a message to signal that the service is running
        client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)

    if MQTT_ENABLED:
        client = mqtt.Client(client_id=MQTT_CLIENT_ID)
        client.on_connect = on_connect
        client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
        if not MQTT_USER is None:
            client.username_pw_set(MQTT_USER, password=MQTT_PASS)
        client.connect(MQTT_HOST, MQTT_PORT, 60)
        client.loop_start()
    else:
        client = None

    ##
    # Setup config defaults for cameras
    ##
    for name, config in CONFIG['cameras'].items():
        config['snapshots'] = {
            'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
            'draw_zones': config.get('snapshots', {}).get('draw_zones', False),
            'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True)
        }
        config['zones'] = config.get('zones', {})

    # Queue for cameras to push tracked objects to
    tracked_objects_queue = mp.Queue(maxsize=len(CONFIG['cameras'].keys())*2)

    # Queue for clip processing
    event_queue = mp.Queue()

    # create the detection pipes and shms
    out_events = {}
    camera_shms = []
    for name in CONFIG['cameras'].keys():
        out_events[name] = mp.Event()
        shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
        shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
        camera_shms.append(shm_in)
        camera_shms.append(shm_out)

    detection_queue = mp.Queue()

    detectors = {}
    for name, detector in DETECTORS.items():
        if detector['type'] == 'cpu':
            detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
        if detector['type'] == 'edgetpu':
            detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])

    # create the camera processes
    camera_process_info = {}
    for name, config in CONFIG['cameras'].items():
        # Merge the ffmpeg config with the global config
        ffmpeg = config.get('ffmpeg', {})
        ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
        ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
        ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
        ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
        ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
        if not config.get('fps') is None:
            ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
        if config.get('save_clips', {}).get('enabled', False):
            ffmpeg_output_args = [
                "-f",
                "segment",
                "-segment_time",
                "10",
                "-segment_format",
                "mp4",
                "-reset_timestamps",
                "1",
                "-strftime",
                "1",
                "-c",
                "copy",
                "-an",
                "-map",
                "0",
                f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4"
            ] + ffmpeg_output_args
        ffmpeg_cmd = (['ffmpeg'] +
                ffmpeg_global_args +
                ffmpeg_hwaccel_args +
                ffmpeg_input_args +
                ['-i', ffmpeg_input] +
                ffmpeg_output_args +
                ['pipe:'])
        
        config['ffmpeg_cmd'] = ffmpeg_cmd
        
        if 'width' in config and 'height' in config:
            frame_shape = (config['height'], config['width'], 3)
        else:
            frame_shape = get_frame_shape(ffmpeg_input)
        
        config['frame_shape'] = frame_shape
        config['take_frame'] = config.get('take_frame', 1)

        camera_process_info[name] = {
            'camera_fps': mp.Value('d', 0.0),
            'skipped_fps': mp.Value('d', 0.0),
            'process_fps': mp.Value('d', 0.0),
            'detection_fps': mp.Value('d', 0.0),
            'detection_frame': mp.Value('d', 0.0),
            'read_start': mp.Value('d', 0.0),
            'ffmpeg_pid': mp.Value('i', 0),
            'frame_queue': mp.Queue(maxsize=2)
        }

        # merge global object config into camera object config
        camera_objects_config = config.get('objects', {})
        # get objects to track for camera
        objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
        # get object filters
        object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
        config['objects'] = {
            'track': objects_to_track,
            'filters': object_filters
        }

        capture_process = mp.Process(target=capture_camera, args=(name, config,
            camera_process_info[name], stop_event))
        capture_process.daemon = True
        camera_process_info[name]['capture_process'] = capture_process

        camera_process = mp.Process(target=track_camera, args=(name, config,
            detection_queue, out_events[name], tracked_objects_queue, camera_process_info[name], stop_event))
        camera_process.daemon = True
        camera_process_info[name]['process'] = camera_process

    # start the camera_processes
    for name, camera_process in camera_process_info.items():
        camera_process['capture_process'].start()
        print(f"Camera capture process started for {name}: {camera_process['capture_process'].pid}")
        camera_process['process'].start()
        print(f"Camera process started for {name}: {camera_process['process'].pid}")

    event_processor = EventProcessor(CONFIG, camera_process_info, CACHE_DIR, CLIPS_DIR, event_queue, stop_event)
    event_processor.start()
    
    object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, WEBHOOK_URL, tracked_objects_queue, event_queue, stop_event)
    object_processor.start()
    
    frigate_watchdog = FrigateWatchdog(camera_process_info, CONFIG['cameras'], detectors, detection_queue, out_events, tracked_objects_queue, stop_event)
    frigate_watchdog.start()

    def receiveSignal(signalNumber, frame):
        print('Received:', signalNumber)
        stop_event.set()
        event_processor.join()
        object_processor.join()
        frigate_watchdog.join()

        for detector in detectors.values():
            detector.stop()
        for shm in camera_shms:
            shm.close()
            shm.unlink()
        sys.exit()
    
    signal.signal(signal.SIGTERM, receiveSignal)
    signal.signal(signal.SIGINT, receiveSignal)

    # create a flask app that encodes frames a mjpeg on demand
    app = Flask(__name__)
    log = logging.getLogger('werkzeug')
    log.setLevel(logging.ERROR)

    @app.route('/')
    def ishealthy():
        # return a healh
        return "Frigate is running. Alive and healthy!"

    @app.route('/debug/stack')
    def processor_stack():
        frame = sys._current_frames().get(object_processor.ident, None)
        if frame:
            return "<br>".join(traceback.format_stack(frame)), 200
        else:
            return "no frame found", 200

    @app.route('/debug/print_stack')
    def print_stack():
        pid = int(request.args.get('pid', 0))
        if pid == 0:
            return "missing pid", 200
        else:
            os.kill(pid, signal.SIGUSR1)
            return "check logs", 200

    @app.route('/debug/stats')
    def stats():
        stats = {}

        total_detection_fps = 0

        for name, camera_stats in camera_process_info.items():
            total_detection_fps += camera_stats['detection_fps'].value
            stats[name] = {
                'camera_fps': round(camera_stats['camera_fps'].value, 2),
                'process_fps': round(camera_stats['process_fps'].value, 2),
                'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
                'detection_fps': round(camera_stats['detection_fps'].value, 2),
                'pid': camera_stats['process'].pid,
                'capture_pid': camera_stats['capture_process'].pid,
                'frame_info': {
                    'detect': camera_stats['detection_frame'].value,
                    'process': object_processor.camera_data[name]['current_frame_time']
                }
            }
        
        stats['detectors'] = {}
        for name, detector in detectors.items():
            stats['detectors'][name] = {
                'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
                'detection_start': detector.detection_start.value,
                'pid': detector.detect_process.pid
            }
        stats['detection_fps'] = round(total_detection_fps, 2)

        return jsonify(stats)

    @app.route('/<camera_name>/<label>/best.jpg')
    def best(camera_name, label):
        if camera_name in CONFIG['cameras']:
            best_object = object_processor.get_best(camera_name, label)
            best_frame = best_object.get('frame')
            if best_frame is None:
                best_frame = np.zeros((720,1280,3), np.uint8)
            else:
                best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
            
            crop = bool(request.args.get('crop', 0, type=int))
            if crop:
                region = best_object.get('region', [0,0,300,300])
                best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
            
            height = int(request.args.get('h', str(best_frame.shape[0])))
            width = int(height*best_frame.shape[1]/best_frame.shape[0])

            best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
            ret, jpg = cv2.imencode('.jpg', best_frame)
            response = make_response(jpg.tobytes())
            response.headers['Content-Type'] = 'image/jpg'
            return response
        else:
            return "Camera named {} not found".format(camera_name), 404

    @app.route('/<camera_name>')
    def mjpeg_feed(camera_name):
        fps = int(request.args.get('fps', '3'))
        height = int(request.args.get('h', '360'))
        if camera_name in CONFIG['cameras']:
            # return a multipart response
            return Response(imagestream(camera_name, fps, height),
                            mimetype='multipart/x-mixed-replace; boundary=frame')
        else:
            return "Camera named {} not found".format(camera_name), 404
    
    @app.route('/<camera_name>/latest.jpg')
    def latest_frame(camera_name):
        if camera_name in CONFIG['cameras']:
            # max out at specified FPS
            frame = object_processor.get_current_frame(camera_name)
            if frame is None:
                frame = np.zeros((720,1280,3), np.uint8)

            height = int(request.args.get('h', str(frame.shape[0])))
            width = int(height*frame.shape[1]/frame.shape[0])

            frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)

            ret, jpg = cv2.imencode('.jpg', frame)
            response = make_response(jpg.tobytes())
            response.headers['Content-Type'] = 'image/jpg'
            return response
        else:
            return "Camera named {} not found".format(camera_name), 404
            
    def imagestream(camera_name, fps, height):
        while True:
            # max out at specified FPS
            time.sleep(1/fps)
            frame = object_processor.get_current_frame(camera_name, draw=True)
            if frame is None:
                frame = np.zeros((height,int(height*16/9),3), np.uint8)

            width = int(height*frame.shape[1]/frame.shape[0])
            frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)

            ret, jpg = cv2.imencode('.jpg', frame)
            yield (b'--frame\r\n'
                b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

    app.run(host='0.0.0.0', port=WEB_PORT, debug=False)

    object_processor.join()
Esempio n. 5
0
    start = datetime.datetime.now().timestamp()

    frame_times = []
    for x in range(0, num_detections):
        start_frame = datetime.datetime.now().timestamp()
        detections = object_detector.detect(my_frame)
        frame_times.append(datetime.datetime.now().timestamp() - start_frame)

    duration = datetime.datetime.now().timestamp() - start
    print(f"{id} - Processed for {duration:.2f} seconds.")
    print(
        f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms"
    )


edgetpu_process = EdgeTPUProcess()

# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)

####
# Multiple camera processes
####
camera_processes = []
for x in range(0, 10):
    camera_process = mp.Process(target=start,
                                args=(x, 100, edgetpu_process.detection_queue))
    camera_process.daemon = True
    camera_processes.append(camera_process)

start = datetime.datetime.now().timestamp()
Esempio n. 6
0
def main():
    # connect to mqtt and setup last will
    def on_connect(client, userdata, flags, rc):
        info("On connect called")
        if rc != 0:
            if rc == 3:
                info("MQTT Server unavailable")
            elif rc == 4:
                info("MQTT Bad username or password")
            elif rc == 5:
                info("MQTT Not authorized")
            else:
                info(
                    "Unable to connect to MQTT: Connection refused. Error code: "
                    + str(rc))
        # publish a message to signal that the service is running
        client.publish(MQTT_TOPIC_PREFIX + '/available', 'online', retain=True)

    client = mqtt.Client(client_id=MQTT_CLIENT_ID)
    client.on_connect = on_connect
    client.will_set(MQTT_TOPIC_PREFIX + '/available',
                    payload='offline',
                    qos=1,
                    retain=True)
    if not MQTT_USER is None:
        client.username_pw_set(MQTT_USER, password=MQTT_PASS)
    client.connect(MQTT_HOST, MQTT_PORT, 60)
    client.loop_start()

    # start plasma store
    plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
    plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
    time.sleep(1)
    rc = plasma_process.poll()
    if rc is not None:
        raise RuntimeError("plasma_store exited unexpectedly with "
                           "code %d" % (rc, ))

    # Queue for cameras to push tracked objects to
    tracked_objects_queue = mp.Queue()

    # Start the shared tflite process
    tflite_process = EdgeTPUProcess()

    # start the camera_conf processes
    camera_processes = {}
    object_processors = {}

    for camera_conf in CONFIG['cameras']:
        # info(camera_conf['platform'])

        # info(camera_conf)

        for source in camera_conf['source']:
            camera = EzvizClient(camera_conf, source['serial'])
            # info(camera.device_info)

            if not camera.device_info is None:
                name = camera.device_info['deviceName']

                camera_processes[name] = {
                    'fps': mp.Value('d', float(camera_conf['fps'])),
                    'skipped_fps': mp.Value('d', 0.0),
                    'detection_fps': mp.Value('d', 0.0),
                    'camera': camera
                }

                camera_process = mp.Process(
                    target=track_camera,
                    args=(name, camera, FFMPEG_DEFAULT_CONFIG,
                          GLOBAL_OBJECT_CONFIG, tflite_process.detection_queue,
                          tracked_objects_queue, camera_processes[name]['fps'],
                          camera_processes[name]['skipped_fps'],
                          camera_processes[name]['detection_fps']))
                camera_process.daemon = True
                camera_processes[name]['process'] = camera_process

                camera_processes[name]['process'].start()

                object_processors[name] = TrackedObjectProcessor(
                    camera_conf, client, MQTT_TOPIC_PREFIX,
                    tracked_objects_queue)
                object_processors[name].start()

        camera_watchdog = CameraWatchdog(camera_processes, camera_conf,
                                         tflite_process, tracked_objects_queue,
                                         object_processors)
        camera_watchdog.start()

        #
        # for source in camera_conf['source']:
        #     if not 'serial' in source:
        #         warn("serial is empty")
        #         continue
        #
        #     if camera_conf['platform'] == 'ezviz':
        #         deviceSerial = str(source['serial'])
        #         appKey = camera_conf['appKey']
        #         appSecret =camera_conf['appSecret']
        #
        #         ezclient = EzvizClient(deviceSerial,appKey,appSecret)
        #         device_info = ezclient.get_device_info()
        #         info("device_info={}".format(device_info))
        #         if  device_info is None:
        #             continue
        #
        #         name = device_info['data']['deviceName']
        #         input = ezclient.get_device_live_address()
        #
        #     else:
        #         continue
        #
        #     camera_processes[name] ={
        #             'fps': mp.Value('d', float(camera_conf['fps'])),
        #             'skipped_fps': mp.Value('d', 0.0),
        #             'detection_fps': mp.Value('d', 0.0),
        #     }
        #
        #     camera_conf['input'] = input
        #
        #
        #     camera_process = mp.Process(target=track_camera, args=(name, camera_conf, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
        #         tflite_process.detection_queue, tracked_objects_queue,
        #         camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
        #     camera_process.daemon = True
        #     camera_processes[name]['process'] = camera_process
        #
        # for name, camera_process in camera_processes.items():
        #     camera_process['process'].start()
        #     info(f"Camera_process started for {name}: {camera_process['process'].pid}")
        #
        #     object_processor = TrackedObjectProcessor(camera_conf, client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
        #     object_processor.start()
        #
        #     # camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
        #     # camera_watchdog.start()
        #

    # create a flask app that encodes frames a mjpeg on demand
    app = Flask(__name__)

    @app.route('/')
    def ishealthy():
        # return a healh
        return "Frigate is running. Alive and healthy!"

    @app.route('/debug/stats')
    def stats():
        stats = {}

        total_detection_fps = 0

        for name, camera_stats in camera_processes.items():
            total_detection_fps += camera_stats['detection_fps'].value
            stats[name] = {
                'fps': round(camera_stats['fps'].value, 2),
                'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
                'detection_fps': round(camera_stats['detection_fps'].value, 2)
            }

        stats['coral'] = {
            'fps':
            round(total_detection_fps, 2),
            'inference_speed':
            round(tflite_process.avg_inference_speed.value * 1000, 2),
            'detection_queue':
            tflite_process.detection_queue.qsize(),
            'detection_start':
            tflite_process.detection_start.value
        }

        rc = plasma_process.poll()
        stats['plasma_store_rc'] = rc

        stats['tracked_objects_queue'] = tracked_objects_queue.qsize()

        return jsonify(stats)

    @app.route('/<camera_name>/<label>/best.jpg')
    def best(camera_name, label):
        if camera_name in CONFIG['cameras']:
            best_frame = object_processors[camera_name].get_best(
                camera_name, label)
            if best_frame is None:
                best_frame = np.zeros((720, 1280, 3), np.uint8)
            best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
            ret, jpg = cv2.imencode('.jpg', best_frame)
            response = make_response(jpg.tobytes())
            response.headers['Content-Type'] = 'image/jpg'
            return response
        else:
            return "Camera named {} not found".format(camera_name), 404

    @app.route('/<camera_name>')
    def mjpeg_feed(camera_name):
        fps = int(request.args.get('fps', '3'))
        height = int(request.args.get('h', '360'))
        debug(camera_processes[camera_name])
        if camera_name in camera_processes and camera_processes[camera_name]:
            # if camera_name in CONFIG['cameras']:
            # return a multipart response
            return Response(
                imagestream(camera_name, fps, height),
                mimetype='multipart/x-mixed-replace; boundary=frame')
        else:
            return "Camera named {} not found".format(camera_name), 404

    def imagestream(camera_name, fps, height):

        while True:
            # max out at specified FPS
            time.sleep(1 / fps)
            frame = object_processors[camera_name].get_current_frame(
                camera_name)
            if frame is None:
                frame = np.zeros((height, int(height * 16 / 9), 3), np.uint8)

            frame = cv2.resize(frame,
                               dsize=(int(height * 16 / 9), height),
                               interpolation=cv2.INTER_LINEAR)
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

            ret, jpg = cv2.imencode('.jpg', frame)
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() +
                   b'\r\n\r\n')

    app.run(host='0.0.0.0', port=WEB_PORT, debug=False)

    camera_watchdog.join()

    plasma_process.terminate()
Esempio n. 7
0
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')

# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")

####
# Multiple camera processes
####
camera_processes = []

events = {}
for x in range(0, 10):
  events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')

for x in range(0, 10):
  camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
  camera_process.daemon = True
  camera_processes.append(camera_process)

start_time = datetime.datetime.now().timestamp()

for p in camera_processes:
  p.start()

for p in camera_processes:
  p.join()