Esempio n. 1
0
 def test_conjunction_analysis(self):
     """Test the conjunction analysis."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     wf = WfMi(mi_type='cc', inference='rfx')
     mi, pv = wf.fit(dt, **kw_mi)
     cj_ss, cj = wf.conjunction_analysis(dt)
     assert cj_ss.shape == (n_subjects, n_times, n_roi)
     assert cj.shape == (n_times, n_roi)
Esempio n. 2
0
###############################################################################
# Perform the conjunction analysis
# --------------------------------
#
# Now we have the values of MI we can compute the conjunction analysis. The
# following method returns two DataArray :
#
# - conj_ss : DataArray of shape (n_subjects, n_times, n_roi) that contains the
#             significant MI of each subject
# - conj : DataArray of shape (n_times, n_roi) that contains the number of
#          subjects that have a significant effect at each time point and for
#          each roi

# perform the conjunction analysis
conj_ss, conj = wf.conjunction_analysis()

###############################################################################
# Plot where there's significant effect for each subject
# ------------------------------------------------------
#

# printing the results
print(conj_ss)

fig = plt.figure(figsize=(10, 8))
q = 0
for n_s in range(n_subjects):
    color = ephy[f'subject_{n_s}']['color']
    for n_r, roi in enumerate(conj.roi.data):
        q += 1