Esempio n. 1
0
 def __init__(self, *, input_channels, output_channels, dim,  **kwargs):
     super().__init__()
     self.lin = nn.Sequential(
         nn.Linear(input_channels, dim),
         nn.ReLU(inplace=True),
         nn.Linear(dim, dim),
     )
     self.unpool = FSPool(dim, 20, relaxed=True)
     self.conv = nn.Sequential(
         nn.Conv1d(dim, dim, 1),
         nn.ReLU(inplace=True),
         nn.Conv1d(dim, output_channels, 1),
     )
 def __init__(self, input_channels, output_channels, dim):
     super().__init__()
     self.conv = nn.Sequential(
         nn.Conv2d(2 * input_channels, dim, 1),
         nn.ReLU(),
         nn.Conv2d(dim, output_channels, 1),
     )
     self.lin = nn.Linear(dim, output_channels)
     self.pool = FSPool(output_channels, 20, relaxed=False)
Esempio n. 3
0
 def __init__(self, input_channels, output_channels, dim):
     super().__init__()
     self.conv = nn.Sequential(
         nn.Conv1d(input_channels, dim, 1),
         nn.ReLU(),
         nn.Conv1d(dim, dim, 1),
         nn.ReLU(),
         nn.Conv1d(dim, output_channels - 1, 1),
     )
     self.pool = FSPool(output_channels - 1, 20, relaxed=False)
Esempio n. 4
0
 def __init__(self, dim, point_dim = 128):
     super().__init__()
     self.enc = nn.Sequential(
         nn.Linear(input_channels * set_size, dim)
     )
     self.lin = nn.Sequential(
         nn.Linear(dim, dim, 1),
         nn.ReLU(inplace=True),
         nn.Linear(dim, output_channels, 1),
     )
     self.pool = FSPool(dim, 20, relaxed=kwargs.get('relaxed', True))
Esempio n. 5
0
class FSDecoder(nn.Module):
    def __init__(self, *, input_channels, output_channels, dim,  **kwargs):
        super().__init__()
        self.lin = nn.Sequential(
            nn.Linear(input_channels, dim),
            nn.ReLU(inplace=True),
            nn.Linear(dim, dim),
        )
        self.unpool = FSPool(dim, 20, relaxed=True)
        self.conv = nn.Sequential(
            nn.Conv1d(dim, dim, 1),
            nn.ReLU(inplace=True),
            nn.Conv1d(dim, output_channels, 1),
        )

    def forward(self, x, perm, n_points, *args):
        x = self.lin(x)
        x, mask = self.unpool.forward_transpose(x, perm, n=n_points)
        x = self.conv(x) * mask[:, :1, :]
        return x