def main():
    colnames = ("ID", "Name", "M_sun Vega", "M_sun AB", "lambda_eff (Å)",
                "Description")
    filters = [fsps.get_filter(name) for name in fsps.list_filters()]
    filter_list = make_filter_list(filters)
    txt = make_table(filter_list, colnames)
    print(txt)
Esempio n. 2
0
def main():
    colnames = ("ID", "Name", "M_sun Vega", "M_sun AB", "lambda_eff (Å)",
                "Description")
    filters = [fsps.get_filter(name) for name in fsps.list_filters()]
    filter_list = make_filter_list(filters)
    txt = make_table(filter_list, colnames)
    print(txt)
Esempio n. 3
0
    def _set_filter(self, filt):
        #fetch filter transmission curve from FSPS
        #this sets the wavelength grid, so no rebinning needed

        #lookup for filter number given name
        fsps_filts = fsps.list_filters()
        filt_lookup = dict(zip(fsps_filts, range(1, len(fsps_filts) + 1)))

        #reference in case given a spitzer or mips filter...probably not an issue right now.
        mips_dict = {90: 23.68 * 1e4, 91: 71.42 * 1e4, 92: 155.9 * 1e4}
        spitzer_dict = {
            53: 3.550 * 1e4,
            54: 4.493 * 1e4,
            55: 5.731 * 1e4,
            56: 7.872 * 1e4
        }

        #pull information for this filter
        fobj = fsps.get_filter(filt)
        filter_num = filt_lookup[filt]

        fwl, ftrans = fobj.transmission

        ftrans = np.maximum(ftrans, 0.)
        trans_interp = np.asarray(np.interp(self.inst_wavelength,
                                            fwl / 1e4,
                                            ftrans,
                                            left=0.,
                                            right=0.),
                                  dtype=np.float)

        #normalize transmission
        ttrans = np.trapz(
            np.copy(trans_interp) / self.inst_wavelength, self.inst_wavelength)
        if ttrans < self.small_num: ttrans = 1.
        ntrans = np.maximum(trans_interp / ttrans, 0.0)

        if filter_num in mips_dict:
            td = np.trapz(
                ((self.inst_wavelength / mips_dict[filter_num])**(-2.)) *
                ntrans / self.inst_wavelength, self.inst_wavelength)
            ntrans = ntrans / max(1e-70, td)

        if filter_num in spitzer_dict:
            td = np.trapz(
                ((self.inst_wavelength / spitzer_dict[filter_num])**(-1.0)) *
                ntrans / self.inst_wavelength, self.inst_wavelength)
            ntrans = ntrans / max(1e-70, td)

        #stupid, but re-normalize to peak of 1 (since all other throughput terms
        #are included in the instrument throughput

        self.trans_norm = np.copy(ntrans) / ntrans.max()
        self.transmission = ntrans
        self.pivot = fobj.lambda_eff
        return
Esempio n. 4
0
def sfr(fuv, fuv_err, dist, N):
    mfuv = fuv + 5 - 5 * np.log10(dist * 1e6)
    flux = 10**-((mfuv + mab0) / 2.5)
    flux_err = np.log(10) * flux * fuv_err / 2.5
    Lfuv = flux * 4 * np.pi * (10 * 3.086e18)**2
    Lfuv_err = flux_err * 4 * np.pi * (10 * 3.086e18)**2
    fil = fsps.get_filter('galex_fuv')
    nu_eff = 2.9979e18 / fil.lambda_eff
    sfr = nu_eff * Lfuv / (10**C_fuv)
    sfr_err = nu_eff * Lfuv_err / (10**C_fuv)
    logsfr_err = sfr_err / (np.log(10) * sfr)
    return np.log10(sfr), logsfr_err
Esempio n. 5
0
    def table(self):
        """An :class:`astropy.table.Table` with the chain."""
        msuns = np.array([fsps.get_filter(n).msun_ab
                          for n in self._model.computed_bands])
        theta_f_accept = json.dumps(dict(zip(self._model.theta_params,
                                             self.median_theta_faccept)))
        phi_f_accept = json.dumps(dict(zip(self._model.phi_params,
                                           self.phi_faccept)))
        meta = OrderedDict((
            ('theta_f_accept', theta_f_accept),
            ('phi_f_accept', phi_f_accept),
            ('observed_bands', self._model.observed_bands),
            ('instruments', self._model.instruments),
            ('computed_bands', self._model.computed_bands),
            ('msun_ab', msuns),
            ('band_indices', self._model.band_indices),
            ('theta_params', self._model.theta_params),
            ('phi_params', self._model.phi_params),
            ('theta_proposal_sigma', self._theta_prop),
            ('phi_proposal_sigma', self._theta_prop),
            ('sed', self._model._seds),
            ('sed_err', self._model._errs),
            ('pixels', self._model.pixel_metadata),
            ('area', self._model._areas)))
        # Make tables for individual chains; stack later
        # FIXME should axis order be changed for theta throughout the sampler?
        # or I can just continue to swarp aces here
        theta_table = Table(np.swapaxes(self.theta, 1, 2),
                            names=self._model.theta_params,
                            meta=meta)
        phi_table = Table(self.phi, names=self._model.phi_params)
        background_names = ["B__{0}__{1}".format(n, b)
                            for n, b in zip(self._model.instruments,
                                            self._model.observed_bands)]
        B_table = Table(self.B, names=background_names)
        blob_table = Table(self.blobs)
        tbl = MultiPixelChain(hstack((theta_table,
                                      phi_table,
                                      B_table,
                                      blob_table)))

        # Add M/L computations for each computed band.
        for i, (band_name, msun) in enumerate(zip(self._model.computed_bands,
                                                  msuns)):
            logLsol = micro_jy_to_luminosity(tbl['model_sed'][:, :, i],
                                             msun,
                                             np.atleast_2d(tbl['d']).T)
            ml = tbl['logMstar'] - logLsol
            colname = "logML_{0}".format(band_name)
            tbl.add_column(Column(name=colname, data=ml))

        return tbl
Esempio n. 6
0
File: q4.py Progetto: dgorthi/ay250
def sfr(fuv, fuv_err, dist, N):
    """Converts the Galex FUV filter luminosity into an estimate of the
    SFR of the galaxy. The errors in measurement of FUV magnitude are
    propagated to the errors in SFR estimated.
    Returns: Logarithm of the SFR and the log error in sfr for all the
    galaxies in the sample.
    """
    mfuv = fuv + 5 - 5 * np.log10(dist * 1e6)
    flux = 10**-((mfuv + mab0) / 2.5)
    flux_err = np.log(10) * flux * fuv_err / 2.5
    Lfuv = flux * 4 * np.pi * (10 * 3.086e18)**2
    Lfuv_err = flux_err * 4 * np.pi * (10 * 3.086e18)**2
    fil = fsps.get_filter('galex_fuv')
    nu_eff = 2.9979e18 / fil.lambda_eff
    sfr = nu_eff * Lfuv / (10**C_fuv)
    sfr_err = nu_eff * Lfuv_err / (10**C_fuv)
    logsfr_err = sfr_err / (np.log(10) * sfr)
    return np.log10(sfr), logsfr_err
Esempio n. 7
0
    def _set_filter(self, filt):
        #fetch filter transmission curves from FSPS
        #normalize and interpolate onto template grid

        #lookup for filter number given name
        fsps_filts = fsps.list_filters()
        filt_lookup = dict(zip(fsps_filts, range(1,len(fsps_filts)+1)))

        #reference in case given a spitzer or mips filter...probably not an issue right now.
        mips_dict = {90:23.68*1e4, 91:71.42*1e4, 92:155.9*1e4}
        spitzer_dict = {53:3.550*1e4, 54:4.493*1e4, 55:5.731*1e4, 56:7.872*1e4}
        
        #pull information for this filter
        fobj = fsps.get_filter(filt)
        filter_num = filt_lookup[filt]
        
        fwl, ftrans = fobj.transmission
        
        ftrans = np.maximum(ftrans, 0.)
        trans_interp = np.asarray(np.interp(self.red_wavelength, fwl/1e4, 
                                  ftrans, left=0., right=0.), dtype=np.float)

        #normalize transmission
        ttrans = np.trapz(np.copy(trans_interp)/self.red_wavelength, self.red_wavelength)
        if ttrans < self.small_num: ttrans = 1.
        ntrans = np.maximum(trans_interp / ttrans, 0.0)
        
        if filter_num in mips_dict:
            td = np.trapz(((self.red_wavelength/mips_dict[filter_num])**(-2.))*ntrans/self.red_wavelength, self.red_wavelength)
            ntrans = ntrans/max(1e-70,td)

        if filter_num in spitzer_dict:
            td = np.trapz(((self.red_wavelength/spitzer_dict[filter_num])**(-1.0))*ntrans/self.red_wavelength, self.red_wavelength)
            ntrans = ntrans/max(1e-70,td)

        self.transmission = ntrans
        return 
Esempio n. 8
0
    else:
        cloud = 'smc'
        #Choose bands for which you want to predict images.
        bands = ['irac_1']

        
    # Cloud SFHs
    if cloud == 'smc':
        dm = 18.89
    elif cloud == 'lmc':
        dm=18.49
    mass, rnames, mets, esfh = load_data(cloud)
    
    # Band information
    ab_to_vega = np.atleast_1d(np.squeeze([f.msun_ab-f.msun_vega for b in bands
                             for f in [fsps.get_filter(b)] ]))
    norm = 10**(-0.4 * (dm + ab_to_vega))
        
    #SPS
    sps = fsps.StellarPopulation(compute_vega_mags=True)
    sps.params['sfh'] = 0
    sps.params['imf_type'] = 0
    sps.params['tpagb_norm_type'] = 2 #VCJ
    sps.params['add_agb_dust_model'] = True
    sps.params['agb_dust'] = 1.0
    if len(sps.ssp_ages) == 107:
        isocname = 'MIST_VW'
    else:
        isocname = 'Padova2007'

    # Produce SEDs for each age and Z
Demonstration of plotting FSPS's un-normalized filter transmission tables
(i.e., contents of $SPS_HOME/data/all_filters.dat).
"""

import fsps

from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.gridspec as gridspec


names = ['sdss_u', 'sdss_g', 'sdss_r', 'sdss_i',
         '2mass_J', '2mass_H', '2mass_Ks']
shortnames = ['u', 'g', 'r', 'i', 'J', 'H', 'Ks']
colors = ['violet', 'dodgerblue', 'maroon', 'black', 'c', 'm', 'y']
filters = [fsps.get_filter(n) for n in names]

fig = Figure(figsize=(3.5, 3.5))
canvas = FigureCanvas(fig)
gs = gridspec.GridSpec(
    1, 1, left=0.17, right=0.95, bottom=0.15, top=0.95,
    wspace=None, hspace=None, width_ratios=None, height_ratios=None)
ax = fig.add_subplot(gs[0])

for name, fltr, c, shortname in zip(names, filters, colors, shortnames):
    lmbd, trans = fltr.transmission
    lambda_eff = fltr.lambda_eff / 10000.  # µm
    ax.plot(lmbd / 10000., trans, ls='-', lw=1., c=c)
    ax.annotate(shortname, (lambda_eff, trans.max()),
                textcoords='offset points',
                xytext=(0., 5.),
Esempio n. 10
0
## To select the UV filters plot each one to pick the ones you
## like. Picking manually.

uv = fsps.find_filter('uv')

# for fil in uv:
#     plt.figure()
#     plt.plot(wlinv,10*attenuation.conroy(wl,f_bump=0.5),'-')
#     f = fsps.get_filter(fil)
#     plt.plot((f.transmission[0]*1e-4)**-1,f.transmission[1],label=f.name)
#     plt.legend()

## Amplify all the HST (WFC3) filters:

wfc3 = fsps.find_filter('wfc3_uvis')

for fil in wfc3:
    plt.figure()
    plt.plot(wlinv, attenuation.conroy(wl, f_bump=0.5) / 10, '-')
    f = fsps.get_filter(fil)
    plt.plot((f.transmission[0] * 1e-4)**-1, f.transmission[1], label=f.name)
    plt.legend()

plt.plot(wlinv, attenuation.conroy(wl, f_bump=0.5), '-')
f = fsps.get_filter('wfc3_uvis_f218w')
plt.plot((f.transmission[0] * 1e-4)**-1, 100 * f.transmission[1], label=f.name)
f = fsps.get_filter('wfc3_uvis_f225w')
plt.plot((f.transmission[0] * 1e-4)**-1, 100 * f.transmission[1], label=f.name)
plt.legend()
Esempio n. 11
0
    def compute_library_seds(self, bands, age=13.7, default_pset=None):
        """Compute an SED for each library model instance.

        Model SEDs are stored as absolute fluxes (µJy at d=10pc), normalized
        to a 1 Solar mass stellar population.

        .. todo:: Support parallel computation.

        Parameters
        ----------
        bands : list
            List of `FSPS bandpass names
            <http://dan.iel.fm/python-fsps/current/filters/>`_.
        default_pset : dict
            Default Python-FSPS parameters.
        """
        if default_pset is None:
            default_pset = {}

        # ALWAYS compute AB mags
        default_pset['compute_vega_mags'] = False

        # Solar magnitude in each bandpass
        solar_mags = [fsps.get_filter(n).msun_ab for n in bands]

        # Add bands and AB solar mags to the group attr metadata
        self.group.attrs['bands'] = bands
        self.group.attrs['msun_ab'] = solar_mags

        # Build the SED table
        table_names = ['seds', 'mass_light', 'meta']
        for name in table_names:
            if name in self.group:
                del self.group[name]

        # Table for SEDs
        n_models = len(self.group["params"])
        dtype = np.dtype([(n, np.float) for n in bands])
        sed_table = self.group.create_dataset("seds",
                                              (n_models,),
                                              dtype=dtype)

        # Table for M/L ratios in each bandpass
        dtype = np.dtype([(n, np.float) for n in bands])
        ml_table = self.group.create_dataset("mass_light",
                                             (n_models,),
                                             dtype=dtype)

        # Table for metadata (stellar mass, dust mass, etc..)
        meta_cols = ('logMstar', 'logMdust', 'logLbol', 'logSFR', 'logAge')
        dtype = np.dtype([(n, np.float) for n in meta_cols])
        meta_table = self.group.create_dataset("meta",
                                               (n_models,),
                                               dtype=dtype)

        # Iterate on each model
        # TODO eventually split this work between processors
        sp_param_names = self.group['params'].dtype.names
        sp = fsps.StellarPopulation(**default_pset)
        for i, row in enumerate(self.group["params"]):
            for n, p in zip(sp_param_names, row):
                sp.params[n] = float(p)
            mags = sp.get_mags(tage=age, bands=bands)
            fluxes = abs_ab_mag_to_micro_jy(mags, 10.)

            # Fill in SED and ML tables
            for n, msun, flux in zip(bands, solar_mags, fluxes):
                # interesting slicing syntax for structured array assignment
                sed_table[n, i] = flux

                logL = micro_jy_to_luminosity(flux, msun, 10.)
                log_ml = np.log10(sp.stellar_mass) - logL
                ml_table[n, i] = log_ml

            # Fill in meta data table
            meta_table['logMstar', i] = np.log10(sp.stellar_mass)
            meta_table['logMdust', i] = np.log10(sp.dust_mass)
            meta_table['logLbol', i] = np.log10(sp.log_lbol)
            meta_table['logSFR', i] = np.log10(sp.sfr)
            meta_table['logAge', i] = sp.log_age
Esempio n. 12
0
    def table(self):
        """An :class:`astropy.table.Table` with the chain."""
        if self.sampler is None:
            return None
        msuns = np.array([fsps.get_filter(n).msun_ab
                          for n in self.model.computed_bands])
        meta = OrderedDict((
            ('observed_bands', self.model.observed_bands),
            ('instruments', self.model.instruments),
            ('computed_bands', self.model.computed_bands),
            ('msun_ab', msuns),
            ('d', self.model.d),  # expected distance in parsecs
            ('band_indices', self.model.band_indices),
            ('theta_params', self.model.param_names),
            ('compute_time', self._run_time),
            ('step_time', self._call_time),
            ('sed', self.model._sed),
            ('sed_err', self.model._err),
            ('pixels', self.model.pixel_metadata),
            ('area', self.model._area),
            ('n_walkers', self.n_walkers),
            ("f_accept", self.sampler.acceptance_fraction),
            ("acor", self.sampler.acor)))

        # Convert flatchain into a structured array
        nwalkers, nsteps, ndim = self.sampler.chain.shape
        flatchain_arr = self.sampler.chain[:, :, :].reshape((-1, ndim))
        dt = [(n, np.float) for n in self.model.param_names]
        flatchain = np.empty(flatchain_arr.shape[0], dtype=np.dtype(dt))
        for i, n in enumerate(self.model.param_names):
            flatchain[n][:] = flatchain_arr[:, i]

        # Flatten the blob list and make a structured array
        blobs = self.sampler.blobs
        blobchain = np.empty(nwalkers * nsteps, self.model.blob_dtype)
        blobchain.fill(np.nan)
        for i in xrange(nsteps):
            for j in xrange(nwalkers):
                for k in self.model.blob_dtype.names:
                    blobchain[k][i * self.n_walkers + j] = blobs[i][j][k]

        chain_table = Table(flatchain, meta=meta)
        blob_table = Table(blobchain)
        tbl = SinglePixelChain(hstack((chain_table, blob_table),
                                      join_type='exact'))

        # Add M/L computations for each computed band.
        for i, (band_name, msun) in enumerate(zip(self.model.computed_bands,
                                                  msuns)):
            # Either use expected distance or the chain distance
            # FIXME fragile code
            if 'd' in self.model.param_names:
                d = np.array(tbl['d'])
            else:
                d = self.model.d
            logLsol = micro_jy_to_luminosity(tbl['model_sed'][:, i], msun, d)
            ml = tbl['logMstar'] - logLsol
            colname = "logML_{0}".format(band_name)
            tbl.add_column(Column(name=colname, data=ml))

        return tbl
import fsps
from sedbot.photconv import sb_to_mass, ab_mag_to_mjy, mjy_to_ab_sb

from sedbot.probf import LnUniform, LnNormal

from sedbot.ensemble_multipix.gibbsbg import MultiPixelGibbsBgModeller
from sedbot.ensemble_multipix.threeparam_lnprob import ThreeParamLnProb, \
    GlobalThreeParamLnProb

N_PIXELS = 5
BANDS = ['sdss_u', 'sdss_g', 'sdss_r', 'sdss_i', '2mass_J', '2mass_Ks']
D0 = 785. * 1000.  # distance in parsecs (McConnachie 2005)
D0_SIGMA = 25. * 1000.
PIX_AREA = 1.  # arcsec-sq
MSUN_I = fsps.get_filter('sdss_i').msun_ab
BKG_AMPLITUDE = 1e-10  # units of janksy per sq arcsec

# Hard limits on parameters
LIMITS = {'logmass': (sb_to_mass(30., MSUN_I, PIX_AREA, 0.4, D0),
                      sb_to_mass(12., MSUN_I, PIX_AREA, 0.4, D0)),
          'logtau': (-1., 2.),
          'const': (0., 1.0),
          'sf_start': (0.5, 10.),
          'tburst': (10.0, 13.8),
          'fburst': (0., 1.0),
          'logZZsol': (-1.98, 0.2),
          'd': (D0 - 3. * D0_SIGMA, D0 + 3. * D0_SIGMA),
          'dust1': (0., 5.),
          'dust2': (0., 3.),
          'ml': (-0.5, 1.5)}
Esempio n. 14
0
nbins = 100
alpha = 0.5
lw = 2
color = 'blue'
histtype = 'step'

ax = np.ravel(axes)

# setup filters
ssc_filters = ['irac1','irac2','irac3','irac4']
fsps_filters = ['irac_1','irac_2','irac_3','irac_4']
sedpy_filters = ['spitzer_irac_ch1','spitzer_irac_ch2','spitzer_irac_ch3','spitzer_irac_ch4']
name = ['IRAC1','IRAC2','IRAC3','IRAC4']

for ii in xrange(len(fsps_filters)):
	firac = fsps.get_filter(fsps_filters[ii])
	sirac = sedpy.observate.Filter(sedpy_filters[ii])
	ax[ii].plot(sirac.wavelength/1e4, sirac.transmission / sirac.transmission.max(), label='sedpy',lw=1.5)
	ax[ii].plot(firac.transmission[0]/1e4, firac.transmission[1] /  firac.transmission[1].max(), label='FSPS',lw=1.5)
	
	nirac = load_ssc_curve(ssc_filters[ii]+'.txt')
	ax[ii].plot(nirac['lambda'], nirac['transmission'] / nirac['transmission'].max(), label='new',lw=1.5)


	if ii == 0:
		ax[ii].legend(frameon=False)

	ax[ii].set_xlabel(r'wavelength [$\mu$m]')
	ax[ii].set_ylabel(r'filter response '+name[ii])

outfile = 'irac_response_comparison.png'
Esempio n. 15
0
        cloud = 'smc'
        #Choose bands for which you want to predict images.
        bands = ['irac_1']

    # Cloud SFHs
    if cloud == 'smc':
        dm = 18.89
    elif cloud == 'lmc':
        dm = 18.49
    mass, rnames, mets, esfh = load_data(cloud)

    # Band information
    ab_to_vega = np.atleast_1d(
        np.squeeze([
            f.msun_ab - f.msun_vega for b in bands
            for f in [fsps.get_filter(b)]
        ]))
    norm = 10**(-0.4 * (dm + ab_to_vega))

    #SPS
    sps = fsps.StellarPopulation(compute_vega_mags=True)
    sps.params['sfh'] = 0
    sps.params['imf_type'] = 0
    sps.params['tpagb_norm_type'] = 2  #VCJ
    sps.params['add_agb_dust_model'] = True
    sps.params['agb_dust'] = 1.0
    if len(sps.ssp_ages) == 107:
        isocname = 'MIST_VW'
    else:
        isocname = 'Padova2007'
Esempio n. 16
0
Demonstration of plotting FSPS's un-normalized filter transmission tables
(i.e., contents of $SPS_HOME/data/all_filters.dat).
"""

import fsps

from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.gridspec as gridspec

names = [
    'sdss_u', 'sdss_g', 'sdss_r', 'sdss_i', '2mass_J', '2mass_H', '2mass_Ks'
]
shortnames = ['u', 'g', 'r', 'i', 'J', 'H', 'Ks']
colors = ['violet', 'dodgerblue', 'maroon', 'black', 'c', 'm', 'y']
filters = [fsps.get_filter(n) for n in names]

fig = Figure(figsize=(3.5, 3.5))
canvas = FigureCanvas(fig)
gs = gridspec.GridSpec(1,
                       1,
                       left=0.17,
                       right=0.95,
                       bottom=0.15,
                       top=0.95,
                       wspace=None,
                       hspace=None,
                       width_ratios=None,
                       height_ratios=None)
ax = fig.add_subplot(gs[0])