min_duration=2, max_duration=20)) unstatic = Corpus( "~/Cloud/Projects/ElectroMagnetic/outputs/classification/4_Split/0") static = Corpus( "~/Cloud/Projects/ElectroMagnetic/outputs/classification/4_Split/1") output = "../../reaper/Convolutions/tuned" analysis = Chain(source=(db + tuned + unstatic + static), folder=output) kdtree = KDTree() dr = UMAP(components=10, cache=1) # we need access to the original data analysis.add( # FluidMFCC(discard=True, numcoeffs=20, fftsettings=[4096, -1, -1], cache=1), LibroCQT(cache=0), Stats(numderivs=1, flatten=True, cache=1), Standardise(cache=1), dr, kdtree) if __name__ == "__main__": analysis.run() pinpoint = tuned.items[0] # single item x = dr.output[pinpoint] dist, ind = kdtree.model.query([x], k=200) keys = [x for x in dr.output.keys()] names = [keys[x] for x in ind[0]] d = {"1": names} write_json(analysis.folder / "nearest_files.json", d)
db = (Corpus("~/Cloud/Projects/DataBending/DataAudioUnique").duration( min_duration=2, max_duration=20)) em = Corpus( "~/Cloud/Projects/ElectroMagnetic/outputs/classification/4_Split/1") output = "../../reaper/Convolutions/anchors" analysis = Chain(source=(em + db), folder=output) kdtree = KDTree() dr = UMAP(components=10, cache=1) # we need access to the original data analysis.add( FluidMFCC(discard=True, numcoeffs=20, fftsettings=[4096, -1, -1], cache=1), Stats(numderivs=1, flatten=True, cache=1), Standardise(cache=1), dr, kdtree) if __name__ == "__main__": analysis.run() tracks = {} for anchor in anchors: pos = 0 point = dr.output[anchor] dist, ind = kdtree.model.query([point], k=25) keys = [x for x in dr.output.keys()] names = [keys[x] for x in ind[0]] names.append(anchor) for i in names: dur = get_duration(i)