Esempio n. 1
0
def transition_block(x, reduction, name):
    """A transition block.

    # Arguments
        x: input tensor.`
        reduction: float, compression rate at transition layers.
        name: string, block label.

    # Returns
        output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
    # x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
    #                               name=name + '_bn')(x)
    x = GroupNormalization(axis=GN_AXIS, groups=4,
                           scale=False,
                           name=name + '_gn')(x)
    x = layers.Activation('relu', name=name + '_relu')(x)
    x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
                      use_bias=False,
                      name=name + '_conv')(x)
    x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)

    # squeeze and excite block
    x = squeeze_excite_block(x)
    return x
Esempio n. 2
0
def conv_block(prev, num_filters, kernel=(3, 3), strides=(1, 1), act='relu', prefix=None):
    name = None
    if prefix is not None:
        name = prefix + '_conv'
    conv = Conv2D(num_filters, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(prev)
    if prefix is not None:
        name = prefix + '_norm'
    conv = GroupNormalization(name=name, axis=GN_AXIS)(conv)
    if prefix is not None:
        name = prefix + '_act'
    conv = Activation(act, name=name)(conv)
    return conv
Esempio n. 3
0
def conv2d_gn(x,
              filters,
              kernel_size,
              strides=1,
              padding='same',
              activation='relu',
              use_bias=False,
              name=None):
    """Utility function to apply conv + GN.

    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        kernel_size: kernel size as in `Conv2D`.
        strides: strides in `Conv2D`.
        padding: padding mode in `Conv2D`.
        activation: activation in `Conv2D`.
        use_bias: whether to use a bias in `Conv2D`.
        name: name of the ops; will become `name + '_ac'` for the activation
            and `name + '_gn'` for the batch norm layer.

    # Returns
        Output tensor after applying `Conv2D` and `GroupNormalization`.
    """
    x = layers.Conv2D(filters,
                      kernel_size,
                      strides=strides,
                      padding=padding,
                      use_bias=use_bias,
                      name=name)(x)
    if not use_bias:
        gn_axis = 1 if backend.image_data_format() == 'channels_first' else 3
        gn_name = None if name is None else name + '_gn'
        # try:
        #     x = GroupNormalization(axis=gn_axis, groups=32,
        #                            scale=False,
        #                            name=gn_name)(x)
        # except:
        x = GroupNormalization(axis=gn_axis,
                               groups=filters // 4,
                               scale=False,
                               name=gn_name)(x)
    if activation is not None:
        ac_name = None if name is None else name + '_ac'
        x = layers.Activation(activation, name=ac_name)(x)
    return x
Esempio n. 4
0
def get_densenet121_unet_sigmoid_gn(input_shape=(CONFIG.img_h, CONFIG.img_w, CONFIG.img_c),
                                    output_channels=1,
                                    weights='imagenet'):
    blocks = [6, 12, 24, 16]
    img_input = Input(input_shape)

    x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)

    x = GroupNormalization(axis=GN_AXIS, groups=16,
                           scale=False,
                           name='conv1/gn')(x)
    x = Activation('relu', name='conv1/relu')(x)
    conv1 = x
    x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = MaxPooling2D(3, strides=2, name='pool1')(x)
    x = dense_block(x, blocks[0], name='conv2')
    conv2 = x
    x = transition_block(x, 0.5, name='pool2')
    x = dense_block(x, blocks[1], name='conv3')
    conv3 = x
    x = transition_block(x, 0.5, name='pool3')
    x = dense_block(x, blocks[2], name='conv4')
    conv4 = x
    x = transition_block(x, 0.5, name='pool4')
    x = dense_block(x, blocks[3], name='conv5')
    x = GroupNormalization(axis=GN_AXIS, groups=32,
                           scale=False,
                           name='conv5/gn')(x)
    conv5 = x

    # squeeze and excite block
    conv5 = squeeze_excite_block(conv5)

    conv6 = conv_block(UpSampling2D()(conv5), 320)
    conv6 = concatenate([conv6, conv4], axis=-1)
    conv6 = conv_block(conv6, 320)

    conv7 = conv_block(UpSampling2D()(conv6), 256)
    conv7 = concatenate([conv7, conv3], axis=-1)
    conv7 = conv_block(conv7, 256)

    conv8 = conv_block(UpSampling2D()(conv7), 128)
    conv8 = concatenate([conv8, conv2], axis=-1)
    conv8 = conv_block(conv8, 128)

    conv9 = conv_block(UpSampling2D()(conv8), 96)
    conv9 = concatenate([conv9, conv1], axis=-1)
    conv9 = conv_block(conv9, 96)

    conv10 = conv_block(UpSampling2D()(conv9), 64)
    conv10 = conv_block(conv10, 64)
    res = Conv2D(output_channels, (1, 1), activation='sigmoid')(conv10)
    model = Model(img_input, res)

    if weights == 'imagenet':
        densenet = DenseNet121(input_shape=(input_shape[0], input_shape[1], 3), weights=weights, include_top=False)
        print("Loading imagenet weights.")
        for i in tqdm(range(2, len(densenet.layers) - 1)):
            model.layers[i].set_weights(densenet.layers[i].get_weights())
            model.layers[i].trainable = False

    return model