def plt_linear(infile, outfile, datadir=""): pp = PdfPages(outfile) ### data hyper = np.loadtxt(infile + "hyper.out") loglike = np.loadtxt(infile + "loglike.out") repeat = np.loadtxt(infile + "repeat.out") ### split data c0 = hyper[:, 0] slope = hyper[:, 1:5] sigma = hyper[:, 5:9] trans = hyper[:, 9:12] ### plot plt.clf() row = 2 col = 4 f, ((a00, a01, a02, a03), (a10, a11, a12, a13)) = plt.subplots(row, col, figsize=(col * 5, row * 5)) ax = ((a00, a01, a02, a03), (a10, a11, a12, a13)) # repeat ax[0][0].plot(repeat) ax[0][0].set_yscale("log") ax[0][0].set_xlabel("repeat") # loglike ax[0][1].plot(loglike) ax[0][1].set_xlabel("L") # loglike ax[0][2].plot(range(len(loglike) / 2, len(loglike)), loglike[len(loglike) / 2 :]) ax[0][1].set_xlabel("L") # over plot dat = convert_data(np.loadtxt(datadir + "PlanetGroup.txt")) ax[0][3].errorbar(dat[:, 0], dat[:, 2], xerr=dat[:, 1], yerr=dat[:, 3], fmt=".") best_ind = np.argmax(loglike) hyper_best = hyper[best_ind, :] trans_best = hyper_best[-3:] print 10.0 ** trans_best m_sample = np.linspace(np.min(dat[:, 0]), np.max(dat[:, 0]), 1000) r_sample = piece_linear(hyper_best, m_sample, prob_R=0.5 * np.ones_like(m_sample)) # r_upper = piece_linear(hyper_best, m_sample, prob_R = 0.84 * np.ones_like(m_sample)) # r_lower = piece_linear(hyper_best, m_sample, prob_R = 0.16 * np.ones_like(m_sample)) r_upper = piece_linear_complex(hyper_best, m_sample, prob_R=0.84 * np.ones_like(m_sample)) r_lower = piece_linear_complex(hyper_best, m_sample, prob_R=0.16 * np.ones_like(m_sample)) ax[0][3].plot(m_sample, r_sample, "r-") ax[0][3].fill_between(m_sample, r_lower, r_upper, color="grey", alpha=0.2) r_trans = piece_linear(hyper_best, trans_best, prob_R=0.5 * np.ones_like(trans_best)) ax[0][3].plot(trans_best, r_trans, "rx") ax[0][3].set_xlabel(r"log10(M [M$_\oplus$])") ax[0][3].set_ylabel(r"log10(R [R$_\oplus$])") # C ax[1][0].plot(c0) ax[1][0].set_xlabel("c0") ax[1][0].set_ylim([-1, 1]) # slope for i in range(4): ax[1][1].plot(slope[:, i]) ax[1][1].set_xlabel("slope") # sigma for i in range(4): ax[1][2].plot(sigma[:, i]) ax[1][2].set_yscale("log") ax[1][2].set_xlabel("sigma") ax[1][2].set_ylim([1e-3, 1e0]) # transition for i in range(3): ax[1][3].plot(trans[:, i]) ax[1][3].set_xlabel("transition") ax[1][3].set_ylim([-4, 6]) pp.savefig() pp.close() return None
r2m_r2 = np.log10(Mpost2R(10.**r2m_m)) ### mass histogram nbin=10 ax1.hist(m2r_m2, fc='r', ec='r', alpha=0.3, bins=nbin) ax1.hist(m2r_m,fc='b', bins=nbin, label=['M -> R -> M']) ax1.hist(r2m_m,fc='g', bins=nbin, label=['R -> M']) ax1.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ### model from func import piece_linear, piece_linear_complex best_hyper = np.loadtxt('spatial_median.txt', delimiter=',') m_sample = np.linspace( -3.9, 5.5, 1000 ) r_sample = piece_linear(best_hyper, m_sample, prob_R = 0.5*np.ones_like(m_sample)) r_upper = piece_linear_complex(best_hyper, m_sample, prob_R = 0.84 * np.ones_like(m_sample)) r_lower = piece_linear_complex(best_hyper, m_sample, prob_R = 0.16 * np.ones_like(m_sample)) r_2upper = piece_linear_complex(best_hyper, m_sample, prob_R = 0.975 * np.ones_like(m_sample)) r_2lower = piece_linear_complex(best_hyper, m_sample, prob_R = 0.025 * np.ones_like(m_sample)) ax2.plot(m_sample, r_sample, 'r-') ax2.fill_between(m_sample, r_lower, r_upper, color='grey', alpha=0.6) ax2.fill_between(m_sample, r_2lower, r_2upper, color='grey', alpha=0.4) ax2.set_xlabel(r'$\rm log_{10}\ M/M_\oplus$') ax2.set_ylabel(r'$\rm log_{10}\ R/R_\oplus$') ### radius histogram ax3.hist(m2r_r,fc='b', orientation='horizontal', bins=nbin) ax3.hist(r2m_r,fc='g', orientation='horizontal', bins=nbin) #ax3.hist(r2m_r2, fc='r', ec='r', alpha=0.3, bins=nbin)