def test_funcs(img1, img2): img3 = img2 funcs.show(img1) funcs.save(img1, filename='out_1.png') #funcs.getWidth funcs.getHeight print funcs.getWidth(img1), funcs.getHeight(img1) #funcs.mix mixed_pics = funcs.mix(img1, img3, .5) funcs.show(mixed_pics) #funcs.tint tinted_pic = funcs.tint(img1, (0, 0, 255), .5) funcs.show(tinted_pic) #funcs.grayscale gray_pic = funcs.grayscale(img1) funcs.show(gray_pic) gray_pic_2 = funcs.grayscale(img1, two_dimensional=True) funcs.show(gray_pic_2) #funcs.rotate img_rotate = funcs.rotate(img1, 180) funcs.show(img_rotate)
def write_temperatures(temperatures): date = datetime.datetime.now().strftime('%Y%m%d') try: df = load('history/' + date + '.df') df.loc[df.index.max() + 1] = temperatures except FileNotFoundError: df = pd.DataFrame(temperatures, index=[0]) save(df, 'history/' + date + '.df')
def getSeam(img, blur=1, debug=False, attractor=np.zeroes(img.shape)): img_original = img.copy() img = img.copy() img = funcs.grayscale(img, True) img = np.float32(cv2.GaussianBlur(img, (blur, blur), 0)) derivative_kernel = np.float32([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) Ix = cv2.filter2D(img, -1, derivative_kernel) Iy = cv2.filter2D(img, -1, derivative_kernel.T) path = Ix**2 + Iy**2 path = path**.5 path += (atrractor * 100.0) if debug: pic_1_c_0 = path.copy() funcs.save(pic_1_c_0, "output/pic_1_a.png") kernel = np.float32([[1, 1, 1]]) h, w = img.shape[:2] for i in range(1, h): row = path[i - 1, :] row = cv2.erode(row, kernel.T) path[i:i + 1, :] += row.T if debug: pic_1_c_1 = path.copy() funcs.save(pic_1_c_1, "output/pic_1_b.png") x = np.argmin(path[-1]) y = h - 1 seam = [] seam.append(x) while y > 0: y -= 1 minX = seam[0] - 1 maxX = seam[0] + 2 x = np.argmin(path[y, max(minX, 0):min(maxX, w - 1)]) + x if x != 0: x -= 1 seam.insert(0, x) if debug: funcs.save(showSeam(pic_1_c_0, seam), "output/pic_1_c_1.png") funcs.save(showSeam(pic_1_c_1, seam), "output/pic_1_c_2.png") funcs.save(showSeam(img_original, seam), "output/pic_1_c_0.png") return seam
if (r[i].loaded and not r[i].excluded): r[i].make_groups(params, window) msg = 'Status: %s: %d groups generated' % (r[i].title, len(r[i].glist)) print(msg) stext.Update(value=msg) if (r[index].detected): current_img = funcs.draw_circles(r[index].data, r[index].holes, params) if (r[index].grouped): current_img = funcs.draw_groups(current_img, r[index].glist, r[index].gcrd, r[index].holes, params) funcs.draw_image(graph, current_img, params) elif event == 'Save' and opened: funcs.save(r, nv, fname_out, params) stext.Update(value='Status: Wrote centers in %s' % fname_out) saved = True elif event == '-GRAPH-' and mode == 't' and opened and r[index].loaded: if mouse_x0 < 0 and mouse_y0 < 0: mouse_x0, mouse_y0 = values['-GRAPH-'] else: mouse_x1, mouse_y1 = values['-GRAPH-'] dx = mouse_x1 - mouse_x0 dy = mouse_y1 - mouse_y0 params.translate(dx, dy) funcs.draw_image(graph, current_img, params) mouse_x0 = mouse_x1 mouse_y0 = mouse_y1 elif event == '-GRAPH-' and mode == 'z' and opened and r[index].loaded: if mouse_x0 < 0 and mouse_y0 < 0:
img = funcs.trans_img(trans_img) seam_map = funcs.trans_img(trans_map) return img, seam_map #Read Image img1 = cv2.imread("image1.png") #pic_1_a,pic_1_b,pic_1_c_0,pic_1_c_1,pic_1_c_2 seam1 = getSeam(img1, 1, debug=True) #pic_1_d pic_1_d = removeSeam(img1, seam1) funcs.save(pic_1_d, "output/pic_1_d.png") #pic_1_e pic_1_e, _ = carveSeams(img1, 120) funcs.save(pic_1_e, "output/pic_1_e.png") #pic_2_a trans_img = funcs.trans_img(img1) pic_2_a = showSeam(trans_img, getSeam(trans_img)) pic_2_a = funcs.trans_img(pic_2_a) funcs.save(pic_2_a, "output/pic_2_a.png") #pic_2_b pic_2_b, _ = carveHorizSeams(img1, 120) funcs.save(pic_2_b, "output/pic_2_b.png")
def run_model(init, output, saver, IS_RESTORE_BASED, company_str, company, epochs, seq_input, seq_output, keep_prob, dropout, optimizer, cost, batch_size, prediction_length, sequence_length, processing_device, display_steps, weights, biases, total_error, unexplained_error, R_squared, R, MAPE, RMSE): merged = tf.summary.merge_all() with tf.device(processing_device): with tf.Session() as sess: if IS_RESTORE_BASED: saver.restore( sess, "../modeldata/" + company_str + "/logs/model.ckpt") sess.run(init) train_writer = tf.summary.FileWriter( '../modeldata/' + company_str + '/logs/', sess.graph) train_start = time.time() step = 1 while company.train.epochs_completed <= epochs: step += 1 company_data, company_labels = company.train.next_batch() output_data = np.reshape(company_labels.T[1].T, (batch_size, prediction_length)) _, loss, rsq, r, te, une, mape, rmse = sess.run( [ optimizer, cost, R_squared, R, total_error, unexplained_error, MAPE, RMSE ], feed_dict={ seq_input: company_data.T[1].T, seq_output: output_data, keep_prob: dropout }) if step % display_steps == 0: print "Epochs completed: {}".format(company.train.epochs_completed) +\ " loss: {}".format(loss) + " step: {}".format(step) if company.train.epochs_completed == epochs - 1: p_valfile = open( "../graphdata/" + company_str + "_pval.js", "w") p_valfile.write("var " + company_str + "_total_error = " + str(te) + ";") p_valfile.write("var " + company_str + "_unexplained_error = " + str(une) + ";") p_valfile.write("var " + company_str + "_R_squared = " + str(rsq) + ";") p_valfile.write("var " + company_str + "_R = " + str(r) + ";") p_valfile.write("var " + company_str + "_MAPE = " + str(mape) + ";") p_valfile.write("var " + company_str + "_RMSE = " + str(rmse) + ";") p_valfile.close() print "Optimization Completed. Training time: {}sec".format( time.time() - train_start) # save weights, biases, model: save(sess.run(weights['layer1']), "../modeldata/" + company_str + "/weights/layer1") save(sess.run(weights['layer2']), "../modeldata/" + company_str + "/weights/layer2") save(sess.run(biases['layer1']), "../modeldata/" + company_str + "/biases/layer1") save(sess.run(biases['layer2']), "../modeldata/" + company_str + "/biases/layer2") save_path = saver.save( sess, "../modeldata/" + company_str + "/logs/model.ckpt") test_data, test_labels = company.test.next_batch() test_labels = np.reshape(test_labels.T[1].T[:15], (15, prediction_length)) test_data = np.reshape(test_data.T[1].T[:15], (15, sequence_length)) predictions = sess.run(output, feed_dict={ seq_input: test_data, keep_prob: 1.0 }) predictions = np.reshape(predictions, (15, prediction_length)) labels, pred = [], [] for data, label, prediction in zip(test_data, test_labels, predictions): labels.append(np.concatenate((data, label), 0).tolist()) pred.append(np.concatenate((data, prediction), 0).tolist()) final_data, final_label = [], [] temp = 1 for d, l in zip(labels, pred): final_data.append(d[0]) final_label.append(l[0]) final_data[:-1] += pred[temp - 1:][0] final_label[:-1] += labels[temp - 1:][0] temp += 1 # print temp error = 0.05 resultfile = open("../resultfile.txt", "a") if pred[0][len(pred[0]) - 2] > (pred[0][len(pred[0]) - 1] + error): res_str = "CLOSING PRICE WILL GO UP FOR " + company_str + " >> BUY MORE SHARE..." else: res_str = "CLOSING PRICE WILL GO Down FOR " + company_str + " >> SELL MORE SHARE..." resultfile.write(res_str) resultfile.write("\n") plt2.plot(test_labels.T[0][:-1], color='red', label='prediction') plt2.plot(predictions.T[0][1:], color='blue', label='actual') plt2.title(company_str) plt2.xlabel('days') plt2.ylabel('normalized closing prices') plt2.legend(loc='upper left') plt2.savefig("../graph/prediction" + company_str + ".png") plt2.close() datafile = open("../graphdata/" + company_str + "_data.js", "w") labelfile = open("../graphdata/" + company_str + "_label.js", "w") datafile.write("var " + company_str + "_CLOSING_PRICE_DATA = [ 0") labelfile.write("var " + company_str + "_CLOSING_PRICE_LABEL = [ 0") for dat, lab in zip(final_data[:-1], final_label[:-1]): datafile.write(", '") labelfile.write(", '") datafile.write(str(dat)) labelfile.write(str(lab)) datafile.write("'") labelfile.write("'") datafile.write(" ];") labelfile.write(" ];") datafile.close() labelfile.close() print "Completed....."
names.append(name) # found names to console if len(names) > 0: dayFlights = sort(flights[flights['localFlightDateStr']==localFlightDateStr],order=['points'])[::-1] sortedNames = dayFlights[:]['name'] lastnames = '' for name in sortedNames: lastnames += '{} '.format(name.split(' ')[1]) print (lastnames) else: print('') if not inPresent and mod(iSinceSave+1,nSaveInterval) == 0: # '''save flights ; if unpublished, publish them.''' publish(iflight, flights, notes, password, senderEmail, receiverEmail, adminEmail, inPresent, emailBlock) save(flightsFile,iflight,flights) writeFile('lastDateSearched.txt', loopDateStr) iSinceSave = 0 print('Saved') '''If loopDate is localToday, wait until tomorrow''' while date.today() == loopDate: # wait until next morning. This ends for Australia at its midnight. It ends for USA at UTC's midnight. inPresent = True loopDate -= timedelta(days=1) # Come back to this date on sleep exit...incremented just after sleep. publish(iflight, flights, notes, password, senderEmail, receiverEmail, adminEmail, inPresent, emailBlock,\ rankFlights, localAirports, groupName, googleGroupName, localeName, htmlFilePath) save(flightsFile,iflight,flights) yesterday = date.isoformat(date.today() - timedelta(days=1)) writeFile('lastDateSearched.txt', yesterday) shutil.copy(flightsFile, '/media/sf_landscapes-zip/') iSinceSave = 0 print('Saved')
"""Candle""" candle_names = glob.glob("candle_in\*.png") candle_names = sorted(candle_names) candle_imgs = [] for img in candle_names: candle_imgs.append(cv2.imread(img)) out1, out2, start, end = start_end_frame(candle_imgs) candle_out = candle_imgs[start:end] save_imgs(candle_out, "candle_out\\") funcs.save(out1, "candle_out\out1.png") funcs.save(out2, "candle_out\out2.png") """Personal""" printer_names = glob.glob("printer_in\*.png") printer_names = sorted(printer_names) printer_imgs = [] for img in printer_names: printer_imgs.append(cv2.imread(img)) out3, out4, startp, endp = start_end_frame(printer_imgs) printer_out = printer_imgs[startp:endp] save_imgs(printer_out, "printer_out\\") funcs.save(out3, "printer_out\out3.png")