for i in range(len(data)):
        temp = center-data[i,:]
        temp_value = [email protected]
        temp_dis[i] =  np.sqrt(temp_value)
    dis = np.max(temp_dis)
    return dis
#plot the rectangle in the original image
def plot_rectangle(draw,area_x1,area_x2,area_y1,area_y2):
    #draw = ImageDraw.Draw(im)
    draw.line((area_y1, area_x1, area_y1, area_x2), fill="blue", width=10)
    draw.line((area_y1, area_x2, area_y2, area_x2), fill="blue", width=10)
    draw.line((area_y2, area_x2, area_y2, area_x1), fill="blue", width=10)
    draw.line((area_y2, area_x1, area_y1, area_x1), fill="blue", width=10)
    #im.show()
#%%load model and weight
model = cnn_model()
model.summary()
model.load_weights('./model_weight/2012images-areas-7.5-50epoch.h5')
#%%
windowsize_r = 30
windowsize_c = 30
raw_image_files = glob.glob("./New folder/*.jpg")
count = 0
for name in raw_image_files:
    name_piece = name.split("\\")[1]
    name_image = name_piece.split(".")[0]
    path_image = './New folder/'+str(name_image)+'.jpg'
    testimage = Image.open(path_image)
    test_image = imread(path_image)
    start_time = time.time()
    for r in range(0,test_image.shape[0] - windowsize_r+1, 6):
def groundtruth():
    global panelC, count

    txt_path = path.split("/")[6]
    txt_path_1 = txt_path.split(".")[0]
    save_path = './' + str(txt_path_1) + '.txt'
    txt_path = './2012image/' + str(txt_path_1) + '.txt'
    read_path = './2012image/' + str(txt_path_1) + '.txt'
    if not os.path.exists(read_path):
        tk.messagebox.showerror(title='error message',
                                message='No such file or directory')
    else:
        count = 0
        true_length = image.shape[1]
        true_width = image.shape[0]

        #read the orginal demension of the image
        txtfile = open(txt_path)
        firstline = txtfile.readlines()[0].split(",")
        original_length = int(firstline[2])
        original_width = int(firstline[3])
        txtfile.close()

        #read the number of the random points in the image
        txtfile = open(txt_path)
        count_points = int(txtfile.readlines()[5])
        txtfile.close()

        txtfile = open(txt_path)
        data = txtfile.readlines()[6:6 + count_points]
        corrdinate = np.zeros([count_points, 2], dtype=np.int)
        for n in range(count_points):
            data1 = data[n].split(",")
            corrdinate[n,
                       0] = int(int(data1[0]) * true_length / original_length)
            corrdinate[n, 1] = int(int(data1[1]) * true_width / original_width)
        txtfile.close()
        txtfile = open(txt_path)
        label_encode = np.zeros(count_points)
        label = txtfile.readlines()[6 + count_points:6 + count_points +
                                    count_points]
        for m in range(count_points):
            label1 = label[m].split(",")
            label2 = label1[1]
            new_l = label2.replace('\"', '')
            #coral
            if ((new_l == "Agalg") or (new_l == "Aga") or (new_l == "Agaf")
                    or (new_l == "Col") or (new_l == "Helc")
                    or (new_l == "Mdrc") or (new_l == "Mdrcb")
                    or (new_l == "Mdrsd") or (new_l == "Mdrsf")
                    or (new_l == "Man") or (new_l == "Mon") or (new_l == "Ocu")
                    or (new_l == "Sco") or (new_l == "Sol") or (new_l == "Ste")
                    or (new_l == "STY")):
                label_encode[m] = 0
            #dead coral plate
            elif (new_l == "DCP"):
                label_encode[m] = 1
            #rock
            elif (new_l == "ROC"):
                label_encode[m] = 2
            #red alage
            elif ((new_l == "CCA") or (new_l == "Amph") or (new_l == "Bot")
                  or (new_l == "Haly") or (new_l == "Kal") or (new_l == "Mar")
                  or (new_l == "PEY") or (new_l == "RHO")
                  or (new_l == "RHbl")):
                label_encode[m] = 3
            #green alage
            elif ((new_l == "Ana") or (new_l == "Cau") or (new_l == "Caup")
                  or (new_l == "Caur") or (new_l == "Caus")
                  or (new_l == "Chae") or (new_l == "CHL") or (new_l == "Cod")
                  or (new_l == "Codin") or (new_l == "Hal")
                  or (new_l == "Halc") or (new_l == "Hald")
                  or (new_l == "Halt") or (new_l == "Micr")
                  or (new_l == "Ulva") or (new_l == "Venv")
                  or (new_l == "Verp")):
                label_encode[m] = 4
            else:
                label_encode[m] = 5
        txtfile.close()
        crop_length = 30
        crop_width = 30
        all_image = np.zeros([count_points, crop_length, crop_width, 3],
                             dtype=np.uint8)
        crop_x = int(crop_length / 2)
        crop_y = int(crop_width / 2)
        for i in range(count_points):
            if (corrdinate[i, 0] - crop_x < 0):
                corrdinate[i, 0] = crop_x
            elif (corrdinate[i, 1] - crop_y < 0):
                corrdinate[i, 1] = crop_y
            elif (corrdinate[i, 0] + crop_x > true_length):
                corrdinate[i, 0] = true_length - crop_x
            elif (corrdinate[i, 1] + crop_y > true_width):
                corrdinate[i, 1] = true_width - crop_y
            all_image[i, :, :, :] = image[corrdinate[i, 1] -
                                          crop_y:corrdinate[i, 1] + crop_y,
                                          corrdinate[i, 0] -
                                          crop_x:corrdinate[i, 0] + crop_x]

        model = cnn_model()
        model.summary()
        model.load_weights('./model_weight/2012images-areas-7.5-50epoch.h5')
        predict = model.predict(all_image, verbose=1)
        res = np.argmax(predict, axis=1)
        result_name = str(save_path) + ' points.jpg'
        save_dir = os.path.join(os.getcwd(), '50point_result')
        if not os.path.isdir(save_dir):
            os.makedirs(save_dir)
        result_path = os.path.join(save_dir, result_name)

        plt.imshow(image)
        for i in range(50):
            x = corrdinate[i, 0]
            y = corrdinate[i, 1]
            true_label = label_encode[i]
            if (label_encode[i] == res[i]):
                count = count + 1
                mark_point(x, y, true_label)
            else:
                count = count
                mark_point(x, y, true_label)
                mark_wrong_point(x, y)

        fig = plt.gcf()
        fig.set_size_inches(image.shape[1] / 100.0 / 3.0,
                            image.shape[0] / 100.0 / 3.0)
        plt.gca().xaxis.set_major_locator(plt.NullLocator())
        plt.gca().yaxis.set_major_locator(plt.NullLocator())
        plt.subplots_adjust(top=1,
                            bottom=0,
                            left=0,
                            right=1,
                            hspace=0,
                            wspace=0)
        plt.margins(0, 0)
        plt.savefig(result_path, bbox_inches='tight')
    acc = ((count + 5) / 50) * 100
    res_image = imread(result_path)
    pil_res_image = Image.fromarray(res_image)

    pil_res_image_resize = resize(800, 800, pil_res_image)

    # ...and then to ImageTk format
    res_image_show = ImageTk.PhotoImage(pil_res_image_resize)
    if panelC is None:  #or panelB is None:
        # the first panel will store our original image
        panelC = tk.Label(image=res_image_show)
        panelC.image = res_image_show
        panelC.place(x=300, y=100, anchor='nw')

# otherwise, update the image panels
    else:
        # update the pannels
        panelC.configure(image=res_image_show)
        panelC.image = res_image_show
    panelC = None  #very import to clean panel
    var.set('Accuracy is: ' + str(acc) + '%' +
            '\n X: mismatching \n the manual label')
Esempio n. 3
0
    test = np.uint8(testimage)
    pixel = np.zeros([1, 1, 3], dtype=np.uint8)
    for r in range(0, test.shape[0]):
        for c in range(0, test.shape[1]):
            pixel = test[r, c, :]
            #if(np.all(pixel == blue)):
            if ((pixel[0] == 0) and (pixel[1] == 0)):
                count = count + 1
    all_pixel = test.shape[0] * test.shape[1]
    coral_percent = (count / all_pixel) * 100
    coral_percent = round(coral_percent, 2)
    return coral_percent


#%%load model and weight
model = cnn_model()
model.summary()
#model.load_weights('CNN_weights-08.h5')
model.load_weights('./saved_models/2012images_trained_augmentation-6.6.h5')
#model.load_weights('./saved_models/2012images_trained_model.h5')
#model.load_weights('./saved_models/cifar10_ResNet14v1_model.007.h5')
#model.load_weights('./saved_models/2012images_data_augmentation_trained_model-50epoch.h5')
#%%
windowsize_r = 30
windowsize_c = 30
raw_image_files = glob.glob("./2013-image/*.jpg")
count = 0
for name in raw_image_files:
    name_piece = name.split("\\")[1]
    name_image = name_piece.split(".")[0]
    path_image = './2013-image/' + str(name_image) + '.jpg'
Esempio n. 4
0
    # load dataset
    path_data = 'train/image'
    path_truth = 'train/gtruth'
    path_loss = 'train/boundary'
    data_set = np.zeros((100, 512, 512))
    target_set = np.zeros((100, 512, 512))
    boundary_set = np.zeros((100, 512, 512))

    for i in range(0, 100):
        # read the information in grayscale images
        data_set[i] = cv2.imread(path_data + '/' + str(i) + '.bmp', 0)
        target_set[i] = cv2.imread(path_truth + '/' + str(i) + '.bmp', 0)
        boundary_set[i] = cv2.imread(path_loss + '/' + str(i) + '.bmp', 0)

    with tf.variable_scope('model_defination') as scope:
        model_output = tf.cast(cnn_model(train_input, batch_size),
                               tf.float32,
                               name='train_output')
        scope.reuse_variables()
        test_output = tf.cast(cnn_model(test_input, 1),
                              tf.float32,
                              name='test_output')

    loss = loss_function(model_output, train_target, boun_target)
    accuracy = accuracy_of_batch(test_output, test_target)

    generation_num = tf.Variable(0, trainable=False)

    #geneartion_num get the current generation_number
    #learning_rate initial  0.002
    train_op = train_step(loss, generation_num, learning_rate,