Esempio n. 1
0
 def test_eval(self):
     #
     # 1D 
     # 
     
     # Define Kernel function
     def k_fn(x,y,c = 2):
         return x*y + c
     
     k = Explicit(f=lambda x,y,c: x*y+c, parameters={'c':1}, 
                  n_variables=2, dim=1)
     
     # Construct kernel, specifying parameter c
     kernel = Kernel(k)
     
     # Evaluation points
     x = np.ones((11,1))
     y = np.linspace(0,1,11)[:,None]
     
     # Check accuracy
     self.assertTrue(np.allclose(kernel.eval((x,y)), x*y+1))
     
     # Define kernel with default parameters
     k.set_parameters({'c':2})
     
     kernel = Kernel(k)
     
     # Check accuracy
     self.assertTrue(np.allclose(kernel.eval((x,y)), x*y+2))
Esempio n. 2
0
    def test_set_parameters(self):
        # Define explicit function
        rule = lambda x, a: a * x[:, 0] - x[:, 1]
        parms = [{'a': 1}, {'a': 2}]
        f = Explicit(rule, parameters=parms, dim=2)

        x = (1, 2)
        self.assertTrue(np.allclose(f.eval(x), np.array([-1, 0])))

        # Modify parameter
        f.set_parameters({'a': 2}, pos=0)
        self.assertTrue(np.allclose(f.eval(x), np.array([0, 0])))