def approach_pipe_2(): f = (PN2.load_data_dict(FP_ZIP) | PN2.gender_count_per_year | PN2.percent * 100 | PN2.year_range(1900, 2000) | PN2.plot | PN2.open_plot) # with store and recall to do multiple operations f = (PN2.load_data_dict(FP_ZIP) | PN2.gender_count_per_year | PN2.percent * 100 | fpn.store('gpcent') | PN2.year_range(1900, 2000) | PN2.plot | PN2.open_plot | fpn.recall('gpcent') | PN2.year_range(2001, 2015) | PN2.plot | PN2.open_plot) #fpn.run(f) # this implicitly passes a PipeNodeInput f(pn_input=fpn.PipeNodeInput())
def pn(): # if we are willing to adjust our functions about, we can do even more with PipeNodes. PipeNodes have a protocal; they have to be called in a certain way, and have certain expectations regarding arguments. PipeNodes are created through decorators. Decorated functions receive PipeNode qwargs a = fpn.pipe_node(lambda **kwargs: kwargs[fpn.PREDECESSOR_RETURN] + 'a') # another way of doing the same thing @fpn.pipe_node @fpn.pipe_kwarg_bind(fpn.PREDECESSOR_RETURN) def a(s): return s + 'a' # capturing the initial input is not automatic init = fpn.pipe_node(lambda **kwargs: kwargs[fpn.PN_INPUT]) @fpn.pipe_node_factory def cat(chars, **kwargs): return kwargs[fpn.PREDECESSOR_RETURN] + chars f = init | a | cat('b') | cat('c') print(f(pn_input='*')) assert f(pn_input='*') == '*abc' # can also be done as the following print(f(**{fpn.PN_INPUT: '*'})) assert f(**{fpn.PN_INPUT: '+'}) == '+abc' print(f['*']) assert f['*'] == '*abc' # with pipenodes, all nodes have access to the PN_INPUT through the common kwargs @fpn.pipe_node_factory def replace_init(chars, **kwargs): return kwargs[fpn.PREDECESSOR_RETURN].replace(kwargs[fpn.PN_INPUT], chars) f = init | a | cat('b') | cat('c') * 2 | replace_init('+') print(f['*']) assert f['*'] == '+abc+abc' # as already shown pipe-nodes can take arguments; those arguments can be pipe nodes themselves @fpn.pipe_node_factory def interleave(chars, **kwargs): pred = kwargs[fpn.PREDECESSOR_RETURN] post = [] for i, c in enumerate(pred): post.append(c) post.append(chars[i % len(chars)]) return ''.join(post) h = init | cat('@@') | cat('__') * 2 f = init | a | cat('b') | cat('c') * 3 | replace_init('+') | interleave(h) print(f['*']) assert f['*'] == '+*a@b@c_+_a*b@c@+_a_b*c@' # if we want to use a PN expression more than once, we can store it and recall it later. To do so, we need to use a PipeNodeInput or itse subclass class Input(fpn.PipeNodeInput): def __init__(self, chars): super().__init__() self.chars = chars # we nee dot change our init function to read the chars attr input_init = fpn.pipe_node(lambda **kwargs: kwargs[fpn.PN_INPUT].chars) p = input_init | cat('www') | fpn.store('p') q = input_init | cat('@@') | cat('__') * 2 | fpn.store('q') r = input_init | a | cat(fpn.recall('p')) | cat('c') * 3 | interleave( fpn.recall('q')) f = fpn.call(p, q, r) pni = Input('x') print(f[pni]) pni = Input('x') # must create a new one assert f[pni] == 'xxa@x@w_w_wxc@x@a_x_wxw@w@c_x_axx@w@w_w_cx'
def test_complex_pipeline(self): @fpn.pipe_node_factory(fpn.PREDECESSOR_RETURN) def multiply(prev, val): return prev * val @fpn.pipe_node(fpn.PN_INPUT, fpn.PREDECESSOR_RETURN) def add_pni(pni, prev): return prev + pni.value @fpn.pipe_node def init(**kwargs): return 12 @fpn.pipe_node_factory def func(arg1, arg2, **kwargs): return (kwargs[fpn.PN_INPUT].value * arg1) + (kwargs[fpn.PREDECESSOR_RETURN] / arg2) class Operations: DELTA = 0.23 def __init__(self, factor): self.factor = factor @fpn.classmethod_pipe_node def add_delta(cls, **kwargs): return cls.DELTA + kwargs[fpn.PREDECESSOR_RETURN] @fpn.staticmethod_pipe_node_factory(fpn.PREDECESSOR_RETURN) def bound_prev(prev, lower, upper): return max(min(prev, lower), upper) @fpn.pipe_node(fpn.PN_INPUT, fpn.PREDECESSOR_RETURN) def adj_by_factor(self, pni, prev): return self.factor * (pni.value - prev) op = Operations(23.717) expr = (init | add_pni | fpn.store("A") | multiply(-8) | func(13, 7) | fpn.store("B") | op.add_delta | Operations.add_delta | op.bound_prev(0, 100) | fpn.store("C") | multiply(130.2) | Operations.bound_prev(100, 200) | op.adj_by_factor | fpn.store("D") | fpn.recall("A") | op.adj_by_factor | fpn.recall("B") | op.adj_by_factor | fpn.recall("C") | op.adj_by_factor | add_pni) class PNI(fpn.PipeNodeInput): def __init__(self, value): super().__init__() self.value = value pni = PNI(-89) post = expr[pni] # Manually calculate expected = 12 expected += pni.value A = expected expected *= -8 expected = (pni.value * 13) + (expected / 7) B = expected expected += op.DELTA expected += Operations.DELTA expected = max(min(expected, 0), 100) C = expected expected *= 130.2 expected = max(min(expected, 100), 200) expected = op.factor * (pni.value - expected) D = expected expected = op.factor * (pni.value - C) expected += pni.value self.assertEqual(-4571.513, expected) self.assertEqual(-4571.513, post) self.assertEqual(A, pni._store["A"]) self.assertEqual(B, pni._store["B"]) self.assertEqual(C, pni._store["C"]) self.assertEqual(D, pni._store["D"]) self.assertEqual(pni.store_items(), dict(A=A, B=B, C=C, D=D).items())