def test_rosen_integers(): X = [2, 4, 6, 8] y = 100*((4 - 2**2)**2) + (2 - 1)**2 \ + 100*((6 - 4**2)**2) + (4 - 1)**2 \ + 100*((8 - 6**2)**2) + (6 - 1)**2 assert functions.Rosenbrock(X) == y
def initiate_rosenbrock_data(initial_n=20, effective_dim=2, high_dim=25, replications=100): fileObject = open('high_dim_rosenbrock_initial_data', 'wb') all_A = np.random.normal(0, 1, [replications, effective_dim, high_dim]) all_s = np.empty((replications, initial_n, effective_dim)) all_f_s = np.empty((replications, initial_n, 1)) test_func = functions.Rosenbrock() for i in range(replications): cnv_prj = projections.ConvexProjection(all_A[i]) all_s[i] = lhs(effective_dim, initial_n) * 2 * np.sqrt( effective_dim) - np.sqrt(effective_dim) all_f_s[i] = test_func.evaluate(cnv_prj.evaluate(all_s[i])) pickle.dump(all_A, fileObject) pickle.dump(all_s, fileObject) pickle.dump(all_f_s, fileObject) fileObject.close()
def Run_Main(low_dim=2, high_dim=20, initial_n=20, total_itr=100, func_type='Branin', matrix_type='simple', kern_inp_type='Y', A_input=None, s=None, xl=None, xu=None, active_var=None, hyper_opt_interval=20, ARD=False, variance=1., length_scale=None, box_size=None, noise_var=0, slice_number=None): if slice_number is None: slice_number = low_dim + 1 if active_var is None: active_var = np.arange(high_dim) if box_size is None: box_size = math.sqrt(low_dim) if hyper_opt_interval is None: hyper_opt_interval = 10 # Specifying the type of objective function if func_type == 'Branin': test_func = functions.Branin(active_var, noise_var=noise_var) elif func_type == 'Rosenbrock': test_func = functions.Rosenbrock(active_var, noise_var=noise_var) elif func_type == 'Hartmann6': test_func = functions.Hartmann6(active_var, noise_var=noise_var) elif func_type == 'Col': test_func = functions.colville(active_var, noise_var=noise_var) elif func_type == 'CAMEL': test_func = functions.camel3(active_var, noise_var=noise_var) elif func_type == 'MNIST': test_func = functions.MNIST(active_var) else: TypeError('The input for func_type variable is invalid, which is', func_type) return best_results = np.zeros([1, total_itr + initial_n]) elapsed = np.zeros([1, total_itr + initial_n]) # generate embedding matrix via samples #f_s = test_func.evaluate(np.array(xl)) f_s_true = test_func.evaluate_true(xl) # get project matrix B using Semi-LSIR B = SSIR(low_dim, xl, f_s_true, xu, slice_number, k=3) embedding_sample = np.matmul(xl, B) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) # Specifying the input type of kernel if kern_inp_type == 'Y': kern_inp = kernel_inputs.InputY(B) input_dim = low_dim elif kern_inp_type == 'X': kern_inp = kernel_inputs.InputX(B) input_dim = high_dim elif kern_inp_type == 'psi': kern_inp = kernel_inputs.InputPsi(B) input_dim = high_dim else: TypeError('The input for kern_inp_type variable is invalid, which is', kern_inp_type) return # Generating GP model k = GPy.kern.Matern52(input_dim=input_dim, ARD=ARD, variance=variance, lengthscale=length_scale) m = GPy.models.GPRegression(kern_inp.evaluate(embedding_sample), f_s_true, kernel=k) m.likelihood.variance = 1e-6 bounds = np.zeros((high_dim, 2)) bounds[:, 0] = -1 bounds[:, 1] = 1 ac = acquisition.ACfunction(B, m, initial_size=initial_n, low_dimension=low_dim) for i in range(total_itr): start = timeit.default_timer() #Updating GP model m.set_XY(kern_inp.evaluate(embedding_sample), f_s_true) m.optimize() #find X to max UCB(BX) es = cma.CMAEvolutionStrategy(high_dim * [0], 0.5, {'bounds': [-1, 1]}) iter = 0 u = [] ac.set_fs_true(max(f_s_true)) #_, maxD = ac.acfunctionEI(max(f_s), low_dim) if i != 0 and (i) % 20 == 0: print("update") while not es.stop() and iter != 2: iter += 1 X = es.ask() es.tell(X, [ac.newfunction(x) for x in X]) #set UCB or EI in newfunction() manually # if i != 0 and (i) % 10 == 0: u.append(es.result[0]) #es.disp() # doctest: +ELLIPSIS #return candidate X maxx = es.result[0].reshape((1, high_dim)) else: while not es.stop() and iter != 2: iter += 1 X = es.ask() es.tell(X, [ac.newfunction(x) for x in X]) #set UCB or EI in newfunction() manually #es.disp() # doctest: +ELLIPSIS #return candidate X maxx = es.result[0].reshape((1, high_dim)) #_,maxD = ac.acfunctionEI(max(f_s),low_dim) #initial qp #ac.updateQP(maxD) #solve qp #res = minimize(ac.qp,np.zeros((high_dim,1)),method='SLSQP',bounds=bounds,options={'maxiter': 5, 'disp': True}) #maxx = res.x #print("qp fun = ",res.fun) es = np.matmul(maxx, B) #maxx:1000*1 B:1000*6 embedding_sample = np.append(embedding_sample, es, axis=0) xl = np.append(xl, maxx, axis=0) #f_s = np.append(f_s, test_func.evaluate(maxx), axis=0) f_s_true = np.append(f_s_true, test_func.evaluate_true(maxx), axis=0) #update project matrix B if i != 0 and (i) % 20 == 0: print("update") #get top "inital_n" from xl xlidex = np.argsort(-f_s_true, axis=0).reshape(-1)[:initial_n] f_s_special = f_s_true[xlidex] xl_special = xl[xlidex] #get top unlabeled data from xu xu = np.array(u) B = SSIR(low_dim, xl_special, f_s_special, xu, slice_number, k=3) embedding_sample = np.matmul(xl, B) ac.resetflag(B) # Collecting data stop = timeit.default_timer() print("iter = ", i, "maxobj = ", np.max(f_s_true)) best_results[0, i + initial_n] = np.max(f_s_true) elapsed[0, i + initial_n] = stop - start return best_results, elapsed, embedding_sample, f_s_true
def RunMain(low_dim=2, high_dim=25, initial_n=20, total_itr=100, func_type='Branin', s=None, active_var=None, ARD=False, variance=1., length_scale=None, box_size=None, high_to_low=None, sign=None, hyper_opt_interval=20, noise_var=0): """ :param high_dim: the dimension of high dimensional search space :param low_dim: The effective dimension of the algorithm. :param initial_n: the number of initial points :param total_itr: the number of iterations of algorithm. The total number of test function evaluations is initial_n + total_itr :param func_type: the name of test function :param s: initial points :param active_var: a vector with the size of greater or equal to the number of active variables of test function. The values of vector are integers less than high_dim value. :param ARD: if TRUE, kernel is isomorphic :param variance: signal variance of the kernel :param length_scale: length scale values of the kernel :param box_size: this variable indicates the search space [-box_size, box_size]^d :param high_to_low: a vector with D elements. each element can have a value from {0,..,d-1} :param sign: a vector with D elements. each element is either +1 or -1. :param hyper_opt_interval: the number of iterations between two consecutive hyper parameters optimizations :param noise_var: noise variance of the test functions :return: a tuple of best values of each iteration, all observed points, and corresponding test function values of observed points """ if active_var is None: active_var = np.arange(high_dim) if box_size is None: box_size = 1 if high_to_low is None: high_to_low = np.random.choice(range(low_dim), high_dim) if sign is None: sign = np.random.choice([-1, 1], high_dim) #Specifying the type of objective function if func_type == 'Branin': test_func = functions.Branin(active_var, noise_var=noise_var) elif func_type == 'Rosenbrock': test_func = functions.Rosenbrock(active_var, noise_var=noise_var) elif func_type == 'Hartmann6': test_func = functions.Hartmann6(active_var, noise_var=noise_var) elif func_type == 'StybTang': test_func = functions.StybTang(active_var, noise_var=noise_var) else: TypeError('The input for func_type variable is invalid, which is', func_type) return best_results = np.zeros([1, total_itr + initial_n]) elapsed = np.zeros([1, total_itr + initial_n]) # Creating the initial points. The shape of s is nxD if s is None: s = lhs(low_dim, initial_n) * 2 * box_size - box_size f_s = test_func.evaluate(back_projection(s, high_to_low, sign, box_size)) f_s_true = test_func.evaluate_true( back_projection(s, high_to_low, sign, box_size)) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) # Building and fitting a new GP model kern = GPy.kern.Matern52(input_dim=low_dim, ARD=ARD, variance=variance, lengthscale=length_scale) m = GPy.models.GPRegression(s, f_s, kernel=kern) m.likelihood.variance = 1e-3 # Main loop for i in range(total_itr): start = timeit.default_timer() # Updating GP model m.set_XY(s, f_s) if (i + initial_n <= 25 and i % 5 == 0) or (i + initial_n > 25 and i % hyper_opt_interval == 0): m.optimize() # Maximizing acquisition function D = lhs(low_dim, 2000) * 2 * box_size - box_size mu, var = m.predict(D) ei_d = EI(len(D), max(f_s), mu, var) index = np.argmax(ei_d) # Adding the new point to our sample s = np.append(s, [D[index]], axis=0) new_high_point = back_projection(D[index], high_to_low, sign, box_size) f_s = np.append(f_s, test_func.evaluate(new_high_point), axis=0) f_s_true = np.append(f_s_true, test_func.evaluate_true(new_high_point), axis=0) stop = timeit.default_timer() best_results[0, i + initial_n] = np.max(f_s_true) elapsed[0, i + initial_n] = stop - start # if func_type == 'WalkerSpeed': # eng.quit() high_s = back_projection(s, high_to_low, sign, box_size) return best_results, elapsed, s, f_s, f_s_true, high_s
def Run_Main(low_dim=2, high_dim=20, initial_n=20, total_itr=100, func_type='Branin', matrix_type='simple', kern_inp_type='Y', A_input=None, s=None, xl=None, xu=None, active_var=None, hyper_opt_interval=10, ARD=False, variance=1., length_scale=None, box_size=None, noise_var=0, slice_number=None): if slice_number is None: slice_number = low_dim + 1 if active_var is None: active_var = np.arange(high_dim) if box_size is None: box_size = math.sqrt(low_dim) if hyper_opt_interval is None: hyper_opt_interval = 10 # Specifying the type of objective function if func_type == 'Branin': test_func = functions.Branin(active_var, noise_var=noise_var) elif func_type == 'Rosenbrock': test_func = functions.Rosenbrock(active_var, noise_var=noise_var) elif func_type == 'Hartmann6': test_func = functions.Hartmann6(active_var, noise_var=noise_var) elif func_type == 'StybTang': test_func = functions.StybTang(active_var, noise_var=noise_var) elif func_type == 'Col': test_func = functions.colville(active_var, noise_var=noise_var) elif func_type == 'MNIST': test_func = functions.MNIST(active_var) else: TypeError('The input for func_type variable is invalid, which is', func_type) return best_results = np.zeros([1, total_itr + initial_n]) elapsed = np.zeros([1, total_itr + initial_n]) total_best_results = np.zeros([1, total_itr + initial_n]) # generate embedding matrix via samples #f_s = test_func.evaluate(xl) f_s_true = test_func.evaluate_true(xl) B = SSIR(low_dim, xl, f_s_true, xu, slice_number, k=3) Bplus = pinv(B).T #6*100 with T ; otherwise, 100*6 cnv_prj = projections.ConvexProjection(Bplus) #embedding_sample = np.matmul(xl,B.T) box = np.sum(B, axis=1) print(box) #box_bound = np.empty((2, low_dim)) # for i in range(low_dim): # for j in range(2): # if j == 0: # box_bound[j][i] = -np.abs(box[i]) # else: # box_bound[j][i] = np.abs(box[i]) # Initiating first sample if s is None: #s = lhs(low_dim, initial_n) * 2 * box_size - box_size # D = [] # for i in range(low_dim): # D.append(lhs(1, initial_n) * 2 * np.abs(box[i]) - np.abs(box[i])) s = lhs(low_dim, 2000) * 2 * np.max(np.abs(box)) - np.max(np.abs(box)) #s = np.array(D).reshape((initial_n,low_dim)) # get low-dimensional representations s = np.matmul(xl, B.T) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) # Specifying the input type of kernel kern_inp, input_dim = specifyKernel("Y", Bplus=Bplus, low_dim=low_dim, high_dim=high_dim) # Generating GP model k = GPy.kern.Matern52(input_dim=input_dim, ARD=ARD, variance=variance, lengthscale=length_scale) m = GPy.models.GPRegression(kern_inp.evaluate(s), f_s_true, kernel=k) m.likelihood.variance = 1e-6 ac = acquisition.ACfunction(B, m, initial_size=initial_n, low_dimension=low_dim) # Main loop of the algorithm ei_d = 0 D = 0 for i in range(total_itr): print("i = ", i) start = timeit.default_timer() #update project matrix every 20 iterations if i != 0 and (i) % 20 == 0: print("update") idx = np.argsort( np.array(-ei_d), axis=0).reshape(-1)[:100] #get 100 unlabeled data index xu = cnv_prj.evaluate( D[idx]) #project the unlabeled data to high-dimensional space xlidex = np.argsort(-f_s_true, axis=0).reshape( -1)[:initial_n] # get 'inital_n' labeled data index xl_special = cnv_prj.evaluate( s[xlidex]) #project the labeled data to high-dimensional space f_s_special = f_s_true[ xlidex] # evaluate the labeled data to get response value B = SSIR(low_dim, xl_special, f_s_special, xu, slice_number, k=3) # perform SEMI-LSIR to update B Bplus = pinv(B).T specifyKernel("Y", B, low_dim, high_dim) cnv_prj = projections.ConvexProjection(Bplus) box = np.sum(B, axis=1) # update low-dimensional search space #f_s = test_func.evaluate(cnv_prj.evaluate(s)) f_s_true = test_func.evaluate_true(cnv_prj.evaluate(s)) print(box) # Updating GP model m.set_XY(kern_inp.evaluate(s), f_s_true) #if (i + initial_n <= 25 and i % 5 == 0) or (i + initial_n > 25 and i % hyper_opt_interval == 0): m.optimize() # finding the next point for sampling # D = [] # for a in range(low_dim): # D.append(lhs(1, 2000) * 2 * np.abs(box[a]) - np.abs(box[a])) # D = np.array(D).reshape((2000, low_dim)) D = lhs(low_dim, 2000) * 2 * np.max(np.abs(box)) - np.max(np.abs(box)) #D = lhs(low_dim, 2000) * 2 * box_size - box_size #test = kern_inp.evaluate(D) mu, var = m.predict(kern_inp.evaluate(D)) #UCB ei_d = ac.originalUCB(mu, var) #EI #ei_d = EI(len(D), max(f_s_true), mu, var) index = np.argmax(ei_d) #xl = np.append(xl,cnv_prj.evaluate([D[index]]),axis=0) s = np.append(s, [D[index]], axis=0) #f_s = np.append(f_s, test_func.evaluate(cnv_prj.evaluate([D[index]])), axis=0) f_s_true = np.append(f_s_true, test_func.evaluate_true( cnv_prj.evaluate([D[index]])), axis=0) # Collecting data stop = timeit.default_timer() print("iter = ", i, "maxobj = ", np.max(f_s_true)) best_results[0, i + initial_n] = np.max(f_s_true) elapsed[0, i + initial_n] = stop - start for i in range(initial_n + total_itr): total_best_results[0, i] = np.max(best_results[0, :i + 1]) # if func_type == 'WalkerSpeed': # eng.quit() return total_best_results, elapsed, s, f_s_true #cnv_prj.evaluate(s)
def Run_Main(low_dim=2, high_dim=20, initial_n=20, total_itr=100, func_type='Branin', matrix_type='simple', kern_inp_type='Y', A_input=None, s=None, active_var=None, hyper_opt_interval=20, ARD=False, variance=1., length_scale=None, box_size=None, noise_var=0,slice_number=None): if slice_number is None: slice_number = low_dim+1 if active_var is None: active_var= np.arange(high_dim) if box_size is None: box_size = math.sqrt(low_dim) if hyper_opt_interval is None: hyper_opt_interval = 10 # Specifying the type of objective function if func_type == 'Branin': test_func = functions.Branin(active_var, noise_var=noise_var) elif func_type == 'Rosenbrock': test_func = functions.Rosenbrock(active_var, noise_var=noise_var) elif func_type == 'Hartmann6': test_func = functions.Hartmann6(active_var, noise_var=noise_var) elif func_type == 'Col': test_func = functions.colville(active_var, noise_var=noise_var) elif func_type == 'MNIST': test_func = functions.MNIST(active_var) elif func_type == 'CAMEL': test_func = functions.camel3(active_var, noise_var=noise_var) else: TypeError('The input for func_type variable is invalid, which is', func_type) return best_results = np.zeros([1, total_itr + initial_n]) elapsed = np.zeros([1, total_itr + initial_n]) # generate embedding matrix via samples #f_s = test_func.evaluate(np.array(s)) f_s_true = test_func.evaluate_true(s) B = SIR(low_dim,s,f_s_true,slice_number) embedding_sample = np.matmul(s,B) for i in range(initial_n): best_results[0, i] = np.max(f_s_true[0:i + 1]) for i in range(initial_n): best_results[0,i]=np.max(f_s_true[0:i+1]) # Specifying the input type of kernel if kern_inp_type == 'Y': kern_inp = kernel_inputs.InputY(B) input_dim = low_dim elif kern_inp_type == 'X': kern_inp = kernel_inputs.InputX(B) input_dim = high_dim elif kern_inp_type == 'psi': kern_inp = kernel_inputs.InputPsi(B) input_dim = high_dim else: TypeError('The input for kern_inp_type variable is invalid, which is', kern_inp_type) return # Generating GP model k = GPy.kern.Matern52(input_dim=input_dim, ARD=ARD, variance=variance, lengthscale=length_scale) m = GPy.models.GPRegression(kern_inp.evaluate(embedding_sample), f_s_true, kernel=k) m.likelihood.variance = 1e-6 bounds = np.zeros((high_dim,2)) bounds[:,0]=-1 bounds[:,1]=1 ac = acquisition.ACfunction(B,m,initial_size=initial_n,low_dimension=low_dim) for i in range(total_itr): start = timeit.default_timer() #Updating GP model m.set_XY(kern_inp.evaluate(embedding_sample),f_s_true) m.optimize() #CMA_ES # D = lhs(high_dim, 2000) * 2 * box_size - box_size # ac_value = AC_function(m,B,D) # solution = np.concatenate((D,ac_value),axis=1) # # for item in solution: # solutions.append((item[:-1],item[-1])) # cma_iteration = 5 # res = np.zeros((cma_iteration,high_dim)) # keep = 0 # for generation in range(cma_iteration): # solutions = [] # for _ in range(cma_es.population_size): # x = cma_es.ask() # value = -AC_function(m, B, x).reshape(1) # solutions.append((x, float(value))) # #print("generation = ", generation,"value = ",value,"\n") # cma_es.tell(solutions) # a = 0 # for sol in solutions: # if sol[1]<keep: # keep = sol[1] # a =np.array(sol[0]).reshape((1,high_dim)) # res[generation] = a[:] # maxx = res[cma_iteration-1] #***** #D = lhs(high_dim, 2000) * 2 * box_size - box_size #test = ac.acfunctionUCB(D) #***** es = cma.CMAEvolutionStrategy(high_dim * [0], 0.5, {'bounds': [-1, 1]}) iter = 0 while not es.stop() and iter !=2: iter+=1 X = es.ask() es.tell(X, [ac.acfunctionUCB(x) for x in X]) #es.disp() # doctest: +ELLIPSIS #es.optimize(cma.ff.rosen) #es.optimize(acfunction.acfunction) maxx = es.result[0] s = np.matmul(maxx.T,B).reshape((1,low_dim)) #maxx:1000*1 B:1000*6 embedding_sample = np.append(embedding_sample, s, axis=0) #f_s = np.append(f_s, test_func.evaluate(maxx), axis=0 ) f_s_true = np.append(f_s_true, test_func.evaluate_true(maxx),axis=0) # Collecting data stop = timeit.default_timer() print("iter = ", i, "maxobj = ", np.max(f_s_true)) best_results[0, i + initial_n] = np.max(f_s_true) elapsed[0, i + initial_n] = stop - start return best_results, elapsed, embedding_sample, f_s_true
def RunRembo(low_dim=2, high_dim=20, initial_n=20, total_itr=100, func_type='Branin', matrix_type='simple', kern_inp_type='Y', A_input=None, s=None, active_var=None, hyper_opt_interval=20, ARD=False, variance=1., length_scale=None, box_size=None, noise_var=0): """" :param low_dim: the dimension of low dimensional search space :param high_dim: the dimension of high dimensional search space :param initial_n: the number of initial points :param total_itr: the number of iterations of algorithm. The total number of test function evaluations is initial_n + total_itr :param func_type: the name of test function :param matrix_type: the type of projection matrix :param kern_inp_type: the type of projection. Projected points are used as the input of kernel :param A_input: a projection matrix with iid gaussian elements. The size of matrix is low_dim * high_dim :param s: initial points :param active_var: a vector with the size of greater or equal to the number of active variables of test function. The values of vector are integers less than high_dim value. :param hyper_opt_interval: the number of iterations between two consecutive hyper parameters optimizations :param ARD: if TRUE, kernel is isomorphic :param variance: signal variance of the kernel :param length_scale: length scale values of the kernel :param box_size: this variable indicates the search space [-box_size, box_size]^d :param noise_var: noise variance of the test functions :return: a tuple of best values of each iteration, all observed points, and corresponding test function values of observed points """ if active_var is None: active_var= np.arange(high_dim) if box_size is None: box_size=math.sqrt(low_dim) if hyper_opt_interval is None: hyper_opt_interval = 10 #Specifying the type of objective function if func_type=='Branin': test_func = functions.Branin(active_var, noise_var=noise_var) elif func_type=='Rosenbrock': test_func = functions.Rosenbrock(active_var, noise_var=noise_var) elif func_type=='Hartmann6': test_func = functions.Hartmann6(active_var, noise_var=noise_var) elif func_type == 'StybTang': test_func = functions.StybTang(active_var, noise_var=noise_var) else: TypeError('The input for func_type variable is invalid, which is', func_type) return #Specifying the type of embedding matrix if matrix_type=='simple': matrix=projection_matrix.SimpleGaussian(low_dim, high_dim) elif matrix_type=='normal': matrix= projection_matrix.Normalized(low_dim, high_dim) elif matrix_type=='orthogonal': matrix = projection_matrix.Orthogonalized(low_dim, high_dim) else: TypeError('The input for matrix_type variable is invalid, which is', matrix_type) return # Generating matrix A if A_input is not None: matrix.A = A_input A = matrix.evaluate() #Specifying the input type of kernel if kern_inp_type=='Y': kern_inp = kernel_inputs.InputY(A) input_dim=low_dim elif kern_inp_type=='X': kern_inp = kernel_inputs.InputX(A) input_dim = high_dim elif kern_inp_type == 'psi': kern_inp = kernel_inputs.InputPsi(A) input_dim = high_dim else: TypeError('The input for kern_inp_type variable is invalid, which is', kern_inp_type) return #Specifying the convex projection cnv_prj=projections.ConvexProjection(A) best_results=np.zeros([1,total_itr + initial_n]) elapsed = np.zeros([1, total_itr + initial_n]) # Initiating first sample # Sample points are in [-d^1/2, d^1/2] if s is None: s = lhs(low_dim, initial_n) * 2 * box_size - box_size f_s = test_func.evaluate(cnv_prj.evaluate(s)) f_s_true = test_func.evaluate_true(cnv_prj.evaluate(s)) for i in range(initial_n): best_results[0,i]=np.max(f_s_true[0:i+1]) # Generating GP model k = GPy.kern.Matern52(input_dim=input_dim, ARD=ARD, variance=variance, lengthscale=length_scale) m = GPy.models.GPRegression(kern_inp.evaluate(s), f_s, kernel=k) m.likelihood.variance = 1e-6 # Main loop of the algorithm for i in range(total_itr): start = timeit.default_timer() # Updating GP model m.set_XY(kern_inp.evaluate(s),f_s) if (i+initial_n<=25 and i % 5 == 0) or (i+initial_n>25 and i % hyper_opt_interval == 0): m.optimize() # finding the next point for sampling D = lhs(low_dim, 2000) * 2 * box_size - box_size mu, var = m.predict(kern_inp.evaluate(D)) ei_d = EI(len(D), max(f_s), mu, var) index = np.argmax(ei_d) s = np.append(s, [D[index]], axis=0) f_s = np.append(f_s, test_func.evaluate(cnv_prj.evaluate([D[index]])), axis=0) f_s_true = np.append(f_s_true, test_func.evaluate_true(cnv_prj.evaluate([D[index]])), axis=0) #Collecting data stop = timeit.default_timer() best_results[0,i + initial_n]=np.max(f_s_true) elapsed[0, i + initial_n] = stop - start # if func_type == 'WalkerSpeed': # eng.quit() return best_results, elapsed, s, f_s, f_s_true, cnv_prj.evaluate(s)
def RunRembo(low_dim=2, high_dim=20, initial_n=20, total_itr=100, func_type='Branin', matrix_type='simple', kern_inp_type='Y', A_input=None, s=None, f_s=None): #Specifying the type of objective function if func_type == 'Branin': test_func = functions.Branin() elif func_type == 'Rosenbrock': test_func = functions.Rosenbrock() elif func_type == 'Hartmann6': test_func = functions.Hartmann6() else: TypeError('The input for func_type variable is invalid, which is', func_type) return #Specifying the type of embedding matrix if matrix_type == 'simple': matrix = projection_matrix.SimpleGaussian(low_dim, high_dim) elif matrix_type == 'normal': matrix = projection_matrix.Normalized(low_dim, high_dim) elif matrix_type == 'orthogonal': matrix = projection_matrix.Orthogonalized(low_dim, high_dim) else: TypeError('The input for matrix_type variable is invalid, which is', matrix_type) return # Generating matrix A if A_input is not None: matrix.A = A_input A = matrix.evaluate() #Specifying the input type of kernel if kern_inp_type == 'Y': kern_inp = kernel_inputs.InputY(A) elif kern_inp_type == 'X': kern_inp = kernel_inputs.InputX(A) elif kern_inp_type == 'psi': kern_inp = kernel_inputs.InputPsi(A) else: TypeError('The input for kern_inp_type variable is invalid, which is', kern_inp_type) return #Specifying the convex projection cnv_prj = projections.ConvexProjection(A) best_results = np.zeros([1, total_itr]) # Initiating first sample # Sample points are in [-d^1/2, d^1/2] if s is None: s = lhs(low_dim, initial_n) * 2 * math.sqrt(low_dim) - math.sqrt(low_dim) f_s = test_func.evaluate(cnv_prj.evaluate(s)) # Generating GP model k = CustomMatern52(input_dim=low_dim, input_type=kern_inp) m = GPy.models.GPRegression(s, f_s, kernel=k) m.likelihood.variance = 1e-6 m.optimize() # Main loop of the algorithm for i in range(total_itr): D = lhs(low_dim, 1000) * 2 * math.sqrt(low_dim) - math.sqrt(low_dim) # Updating GP model m.set_XY(s, f_s) if (i + 1) % 5 == 0: m.optimize() mu, var = m.predict(D) # finding the next point for sampling ei_d = EI(len(D), max(f_s), mu, var) index = np.argmax(ei_d) s = np.append(s, [D[index]], axis=0) f_s = np.append(f_s, test_func.evaluate(cnv_prj.evaluate([D[index]])), axis=0) #Collecting data best_results[0, i] = np.max(f_s) # max_index = np.argmax(f_s) # max_point = s[max_index] # max_value = f_s[max_index] # # print('The best value is: ', max_value, # '\n \n at the point: ', max_point, # '\n \n with Ay value: ', test_func.scale_domain(cnv_prj.evaluate([max_point])), # '\n\nin the iteration: ', max_index) return best_results, s, f_s
def test_rosen_decimals(): X = [0.5, 0.1] y = 100 * ((0.1 - 0.5**2)**2) + (0.5 - 1)**2 assert functions.Rosenbrock(X) == y