Esempio n. 1
0
def search_with_vanguard(options):
    """maintains a list of extended_graphs. Each extended graph is mutated,
    and the best {shape[0]} mutants are kept. We maintain a tree structure of nested lists of graphs.
    This structure is called the 'vanguard,' the lowest-level lists are called 'platoons.'
    We 'retreat' the vanguard so that no more than {shape[1]} levels are present.
    This allows us to use a form of backtracking, which mitigates the loss of genetic diversity
    encountered when we mutate the vertices one-at-a-time.
    options = branch_factor, meta_pop, pop_per_mu, iterations_per_mu,
             elite_percent, crossover_percent, meta_elite_percent, make_unique,meta_select_proc
    """
    pop_size = options["meta_pop"]
    #independence_number =3
    #g = ExtendedGraph([(i,i+1) for i in range(4)] + [(4,0),(5,4),(5,2)])
    g = options["start_graph"]
    pop = [g]
    mutation_options = {
        "branch_factor": options["branch_factor"],
        "pop_per_mu": options["pop_per_mu"],
        "iterations_per_mu": options["iterations_per_mu"],
        "elite_percent": options["elite_percent"],
        "crossover_percent": options["crossover_percent"]
    }
    genetic_alg1 = GA(FUN.fit,
                      curry_add_vertex_and_mutate(mutation_options),
                      None,
                      0.0,
                      options["meta_elite_percent"],
                      pop_size=options["meta_pop"],
                      make_unique=options["make_unique"])
    #pop = [g]
    results = genetic_alg1.run(pop, 31, meta_select_proc=True)
    print([FUN.fit(r) for r in results])
    #return sorted(results, key=FUN.fit, reverse = True)[0]
    return results[0]
Esempio n. 2
0
def main():
    start_time = time()
    print("---------- main1 --------------")
    f0 = gzip.open('/home/luca/data/mnist/train-images-idx3-ubyte.gz', 'r')
    f1 = gzip.open('/home/luca/data/mnist/t10k-images-idx3-ubyte.gz', 'r')
    l0 = gzip.open('/home/luca/data/mnist/train-labels-idx1-ubyte.gz', 'r')
    l1 = gzip.open('/home/luca/data/mnist/t10k-labels-idx1-ubyte.gz', 'r')
    X_train = np.frombuffer(f0.read(), dtype=np.uint8,
                            offset=16).reshape(-1, 28 * 28)
    X_test = np.frombuffer(f1.read(), dtype=np.uint8,
                           offset=16).reshape(-1, 28 * 28)
    y_train = np.frombuffer(l0.read(), dtype=np.uint8, offset=8)
    y_test = np.frombuffer(l1.read(), dtype=np.uint8, offset=8)

    y_train = one_hot_encoding(y_train)
    y_label = one_hot_encoding(y_test)
    mean = np.mean(X_train)
    std = np.std(X_train)
    X_train, X_test = X_train - mean, X_test - mean
    X_train, X_test = X_train / std, X_test / std

    model = neural_network((89, 'TanH'), (10, 'Sigmoid'),
                           input_nodes=784,
                           seed=20190119)
    model = fit(x_train=X_train,
                y_train=y_train,
                x_test=X_test,
                y_test=y_label,
                model=model,
                optimizer=sgd(epochs=50,
                              eta=0.35,
                              etaN=0.15,
                              decay_type='exponential'),
                batch_size=60,
                eval_every=5,
                early_stop=True,
                seed=20190119)

    validate_accuracy(x_test=X_test, y_test=y_test, model=model)

    # print(model[0][0][0].shape)
    # print(np.sum(model[0][0][0]))
    # print(model[0][0][1].shape)
    # print(np.sum(model[0][0][1]))
    #
    # print(model[1][0][0].shape)
    # print(np.sum(model[1][0][0]))
    # print(model[1][0][1].shape)
    # print(np.sum(model[1][0][1]))
    # print()
    print("--- %s seconds ---" % (time() - start_time))
Esempio n. 3
0
def main():
    start_time = time()
    print("---------- main5 --------------")
    f0 = gzip.open('/home/luca/data/mnist/train-images-idx3-ubyte.gz', 'r')
    f1 = gzip.open('/home/luca/data/mnist/t10k-images-idx3-ubyte.gz', 'r')
    l0 = gzip.open('/home/luca/data/mnist/train-labels-idx1-ubyte.gz', 'r')
    l1 = gzip.open('/home/luca/data/mnist/t10k-labels-idx1-ubyte.gz', 'r')
    X_train = np.frombuffer(f0.read(), dtype=np.uint8,
                            offset=16).reshape(-1, 28 * 28)
    X_test = np.frombuffer(f1.read(), dtype=np.uint8,
                           offset=16).reshape(-1, 28 * 28)
    y_train = np.frombuffer(l0.read(), dtype=np.uint8, offset=8)
    y_test = np.frombuffer(l1.read(), dtype=np.uint8, offset=8)

    y_train = one_hot_encoding(y_train)
    y_label = one_hot_encoding(y_test)
    mean = np.mean(X_train)
    std = np.std(X_train)
    X_train, X_test = X_train - mean, X_test - mean
    X_train, X_test = X_train / std, X_test / std

    model = neural_network((89, 'TanH'), (10, 'Softmax'),
                           input_nodes=784,
                           seed=20190119,
                           weight_init='scaled')
    model = fit(x_train=X_train,
                y_train=y_train,
                x_test=X_test,
                y_test=y_label,
                model=model,
                optimizer=sgd(epochs=50,
                              eta=0.15,
                              etaN=0.05,
                              decay_type='exponential',
                              beta=0.85),
                batch_size=60,
                eval_every=5,
                early_stop=True,
                loss_function='cross-entropy',
                seed=20190119,
                dropout=0.8)

    validate_accuracy(x_test=X_test, y_test=y_test, model=model)

    print("--- %s seconds ---" % (time() - start_time))
Esempio n. 4
0
import matplotlib.pyplot as plt
filepath = r"data/pict.dat"

pictures_matrix = ld.get_pictures(filepath)
# for i in range(pictures_matrix.shape[0]):
#     plt.imshow(pictures_matrix[i])
#     plt.show()

number_training = 3
number_of_distorted = 2
training = np.zeros(
    (number_training, pictures_matrix.shape[1] * pictures_matrix.shape[2]))
for i in range(number_training):
    training[i] = np.ravel(pictures_matrix[i])

weights = fun.fit(training)

#Taking distorted patterns
distorted = np.zeros(
    (number_of_distorted, pictures_matrix.shape[1] * pictures_matrix.shape[2]))
distorted[0] = np.ravel(pictures_matrix[9])
distorted[1] = np.ravel(pictures_matrix[10])

#Energy at attractors
print('Energy of Attractors')
for i in range(number_training):
    energy = fun.compute_lyapunov_energy(training[i].reshape(1, -1), weights)
    print(energy)
print('-----------')

#Energy at distorted patterns
Esempio n. 5
0
    os.chdir(workingPath)
    ne = meanValues.getNumberOfEvents()
    time = meanValues.getTimes()
    T1 = 1 / (kb * temperatures)
    command = "ne/time"
    y = eval(command)
    plt.ylabel(command)
    command = "1/kb/temperatures"  #+np.log(flux**2.5)"
    x = eval(command)
    plt.xlabel(command)
    try:
        plt.semilogy(x, y, ".", label=folder + " " + str(j))

        if hex:
            a, b = f.fit(x, y, 0, 12)
            plt.semilogy(x, f.exp(x, a, b), label="fit low " + str(b))
            a, b = f.fit(x, y, 12, 17)
            plt.semilogy(x, f.exp(x, a, b), label="fit middle " + str(b))
            a, b = f.fit(x, y, 17, 30)
            plt.semilogy(x, f.exp(x, a, b), label="fit middle " + str(b))
            plt.ylim(1e9, 1e14)
        else:
            a, b = f.fit(x, y, 0, 8)
            plt.semilogy(x, f.exp(x, a, b), label="fit low " + str(b))
            a, b = f.fit(x, y, 8, 16)
            plt.semilogy(x, f.exp(x, a, b), label="fit middle " + str(b))
            a, b = f.fit(x, y, 17, 27)
            plt.semilogy(x, f.exp(x, a, b), label="fit high " + str(b))
        plt.legend(loc='best', prop={'size': 6})
        plt.savefig("ne.png")
Esempio n. 6
0
    def __call__(self):

        pandda_start_time = time.time()

        working_phil = parse_phil_args(master_phil=pandda_phil,
                                       args=self.args,
                                       blank_arg_prepend=None,
                                       home_scope=None)

        # # TODO: remove
        # print("printing welcome")
        # sys.stdout.flush()
        # # welcome()
        #
        # # TODO: remove
        # print("getting phil")
        # sys.stdout.flush()
        # p = working_phil.extract()
        #
        # # TODO: remove
        # print("making directories")
        # sys.stdout.flush()
        # out_dir = easy_directory(os.path.abspath(p.pandda.output.out_dir))
        # _log_dir = easy_directory(os.path.join(out_dir, 'logs'))
        # # TODO: remove
        # print("made directories")
        # sys.stdout.flush()
        #
        # _log_filename = 'pandda-{}.log'.format(time.strftime("%Y-%m-%d-%H%M", time.gmtime()))
        #
        # # TODO: remove
        # print("got log fileename")
        # sys.stdout.flush()
        # _def_filename = _log_filename.replace('.log', '.def')
        # _eff_filename = _log_filename.replace('.log', '.eff')
        #
        # # TODO: remove
        # print("makeing log")
        # sys.stdout.flush()
        # log = Log(log_file=os.path.join(_log_dir, _log_filename), verbose=p.settings.verbose)
        #
        # # TODO: remove
        # print("args processor")
        # sys.stdout.flush()
        # pandda_arg_processor = PanddaArgsProcessor(log, p.pandda)
        # args = pandda_arg_processor()
        # params = args.params
        # settings = p.settings
        # # TODO: remove
        # print("got settings")
        # sys.stdout.flush()
        #
        # pickled_dataset_meta = Meta({'number_of_datasets': 0, 'dataset_labels': [], 'dataset_pickle_list': []})

        ################################################################################################################

        # Maps options to code abstractions
        pandda_config = PanDDAConfig(working_phil)

        # Get Dataset
        pandda_dataset = mdc.dataset.dataset.MultiCrystalDataset(
            dataloader=pandda_config.dataloader,
            sample_loader=pandda_config.sample_loader)

        reference = pandda_config.get_reference(pandda_dataset.datasets)
        pandda_dataset.sample_loader.reference = reference

        # transform dataset
        dataset = chain(pandda_dataset, [
            pandda_config.check_data, pandda_config.scale_diffraction,
            pandda_config.filter_structure, pandda_config.filter_wilson,
            pandda_config.align
        ])

        # Get grid
        grid = pandda_config.get_grid(reference)

        # Get file tree
        tree = pandda_config.pandda_output(dataset)

        # Define event Model
        pandda_event_model = PanDDAEventModel(
            pandda_config.statistical_model,
            pandda_config.clusterer,
            pandda_config.event_finder,
            bdc_calculator=pandda_config.bdc_calculator,
            statistics=[],
            map_maker=pandda_config.map_maker,
            event_table_maker=pandda_config.event_table_maker,
            cpus=pandda_config["args"]["cpus"],
            tree=tree)

        # Get partitions
        partitions = pandda_config.partitioner(dataset)

        # instatiate a dataloader for the datasets
        # dataloader = DefaultPanDDADataloader(min_train_datasets=60,
        #                                      max_test_datasets=60)

        # Get the datasets to iterate over
        ds = [(idx, d) for idx, d in pandda_config.dataloader(dataset)]

        # Iterate over resolution shells
        for shell_num, shell_dataset in ds:

            client = get_client()

            # ###############################################
            # Get resolution
            # ###############################################
            resolutions_test = max([
                dts.data.summary.high_res for dtag, dts in
                shell_dataset.partition_datasets("test").items()
            ])
            resolutions_train = max([
                dts.data.summary.high_res for dtag, dts in
                shell_dataset.partition_datasets("train").items()
            ])
            max_res = max(resolutions_test, resolutions_train)

            # ###############################################
            # Instantiate sheel variable names
            # ###############################################

            # Dataset names
            dtags = set(
                shell_dataset.partition_datasets("test").keys() +
                shell_dataset.partition_datasets("train").keys())

            dask_dtags = {
                "{}".format(dtag.replace("-", "_")): dtag
                for dtag in dtags
            }
            train_dtags = [
                dtag for dtag in dask_dtags
                if (dask_dtags[dtag] in shell_dataset.partition_datasets(
                    "train").keys())
            ]
            test_dtags = [
                dtag for dtag in dask_dtags
                if (dask_dtags[dtag] in shell_dataset.partition_datasets(
                    "test").keys())
            ]

            # ###############################################
            # Truncate datasets
            # ###############################################
            # TODO: move to imports section

            truncated_reference, truncated_datasets = PanddaDiffractionDataTruncater(
            )(shell_dataset.datasets, reference)

            # ###############################################
            # Load computed variables into dask
            # ###############################################
            # Rename trucnated datasets
            for ddtag, dtag in dask_dtags.items():
                truncated_datasets[ddtag] = truncated_datasets[dtag]

            # record max res of shell datasets
            shell_max_res = max_res

            # ###############################################
            # Generate maps
            # ###############################################
            # Generate reference map for shell
            shell_ref_map = delayed(get_reference_map)(
                pandda_config.reference_map_getter, reference, shell_max_res,
                grid)

            # Load maps
            xmaps = {}
            for dtag in dask_dtags:
                xmaps[dtag] = delayed(load_sample)(pandda_config.map_loader,
                                                   truncated_datasets[dtag],
                                                   grid, shell_ref_map,
                                                   shell_max_res)

            # ###############################################
            # Fit statistical model to trianing sets
            # ###############################################
            xmaps_persisted_futures = client.persist(
                [xmaps[dtag] for dtag in dask_dtags])
            xmaps_computed = {
                dtag: client.compute(xmaps_persisted_futures[i]).result()
                for i, dtag in enumerate(dask_dtags)
            }

            shell_fit_model = fit(
                pandda_config.statistical_model,
                [xmaps_computed[dtag] for dtag in train_dtags],
                [xmaps_computed[dtag] for dtag in test_dtags])

            shell_fit_model_scattered = client.scatter(shell_fit_model)

            xmaps_scattered = client.scatter(
                [xmaps_computed[dtag] for dtag in dask_dtags])
            xmaps_scattered_dict = {
                dtag: xmaps_scattered[i]
                for i, dtag in enumerate(dask_dtags)
            }

            grid_scattered = client.scatter(grid)

            # ###############################################
            # Find events
            # ###############################################
            zmaps = {}
            clusters = {}
            events = {}
            bdcs = {}
            for dtag in dask_dtags:
                # Get z maps by evaluating model on maps
                zmaps[dtag] = delayed(evaluate_model)(
                    shell_fit_model_scattered, xmaps_scattered_dict[dtag])

                # Cluster outlying points in z maps
                clusters[dtag] = delayed(cluster_outliers)(
                    pandda_config.clusterer, truncated_datasets[dtag],
                    zmaps[dtag], grid_scattered)

                # Find events by filtering the clusters
                events[dtag] = delayed(filter_clusters)(
                    pandda_config.event_finder, truncated_datasets[dtag],
                    clusters[dtag], grid_scattered)

            events_persisted_futures = client.persist(
                [events[dtag] for dtag in dask_dtags])
            events_computed = {
                dtag: client.compute(events_persisted_futures[i]).result()
                for i, dtag in enumerate(dask_dtags)
            }

            events_scattered = client.scatter(
                [events_computed[dtag] for dtag in dask_dtags])
            events_scattered_dict = {
                dtag: xmaps_scattered[i]
                for i, dtag in enumerate(dask_dtags)
            }

            # Calculate background correction factors
            for dtag in dask_dtags:
                bdcs[dtag] = delayed(estimate_bdcs)(
                    pandda_config.bdc_calculator, truncated_datasets[dtag],
                    xmaps_scattered_dict[dtag], shell_ref_map, events[dtag],
                    grid_scattered)

            # Criticise each indiidual dataset (generate statistics, event map and event table)
            event_maps = {}
            for dtag in dask_dtags:
                event_maps[dtag] = delayed(make_event_map)(
                    pandda_config.map_maker, tree, pandda_config.map_loader,
                    truncated_datasets[dtag], shell_ref_map, events[dtag],
                    bdcs[dtag])

            event_maps_persisted_futures = client.persist(
                [event_maps[dtag] for dtag in dask_dtags])

            event_maps_computed = {
                dtag: client.compute(event_maps_persisted_futures[i]).result()
                for i, dtag in enumerate(dask_dtags)
            }

            shell_maps = delayed(make_shell_maps)(pandda_config.map_maker,
                                                  tree, shell_num, reference,
                                                  shell_ref_map)

            shell_maps_persisted_futures = client.persist(shell_maps)
            shell_maps_computed = shell_maps_persisted_futures.result()

            event_table = delayed(make_event_table)(
                pandda_config.event_table_maker, tree, shell_num,
                shell_dataset, events_computed)

            event_table_persisted_future = client.persist(event_table)
            event_table_computed = event_table_persisted_future.result()

            client.close()
Esempio n. 7
0
#%% Rosenbluth
"""
Simulating the polymer with the Rosenbluth algorithm
"""
start_time = time.clock()
R_save, distance_save, w_save, W_save = f.Iterative_simulation(
    Group_size, N, epsilon, sig, R_save, distance_save, w_save, W_save)
print('rosenbluth')
print(time.clock() - start_time)
P_save = np.cumprod(W_save[0, :, :], 0)

Rpol_avg = f.modify(P_save, Rpol_avg, N, Group_size, distance_save)
sigma = f.sigma(N, P_save, Group_size, distance_save**2)

a = f.fit(N, Rpol_avg[:, 0]**2)
fit = (a[0] * (np.linspace(1, N, N) - 1)**0.75)**2

pf.chain(R_save[:, :, 2], 5)
fignr = 1
pf.length(Rpol_avg, N, sigma, fit, fignr, "Rosenbluth")

#%% Perm
"""
Simulating the polymer with the PERM algorithm 
"""

# R_perm = np.zeros((2,N,1))
# W_perm = np.zeros((N-2,1))
# P_perm = np.zeros((N-2,1))