Esempio n. 1
0
    def __init__(self, parent=None):
        QtGui.QWidget.__init__(self, parent)
        self.setWindowTitle('Encryption')
        self.setupUi(self)
        self.events(self)
        # RSA AUTO SETTINGS
        d = -1
        while d < 0:
            p = func.random_n(10, 100)
            q = func.random_n(10, 100)

            while len(str(p)) != len(str(q)):
                q = func.random_n(10, 100)

            while p == q:
                q = func.random_n(10, 100)

            self.lineEdit.setText(unicode(p))

            self.lineEdit_2.setText(unicode(q))

            n = p * q
            key = (p - 1) * (q - 1)
            e = func.random_n(0, 10)
            self.lineEdit_3.setText(unicode(e))
            while func.gcd(key, e) != 1:
                e = func.random_n(0, 10)
            tmp = func.egcd(e, key)
            d = int(tmp[1])

        # EL-GAMAL AUTOSETTINGS
        p = func.random_n(30, 100)  # value 1
        g = random.randint(1, 1000)  # value 2
        x = random.randint(1, 1000)  # value 3

        while g > p - 1:
            g = random.randint(1, 1000)
        while x > p:
            x = random.randint(1, 1000)

        k = random.randint(1, 1000)  # value 4
        while func.gcd(k, p - 1) != 1:
            k = random.randint(1, 1000)

        self.lineEdit_4.setText(unicode(p))
        self.lineEdit_5.setText(unicode(g))
        self.lineEdit_6.setText(unicode(x))
        self.lineEdit_7.setText(unicode(k))

        # Rabin AUTO SETTINGS
        p, q = func.rand34()  # value 1,2
        self.lineEdit_8.setText(unicode(p))
        self.lineEdit_9.setText(unicode(q))
Esempio n. 2
0
def f(y, x=1):
    keys = set()
    found = False
    while y > 1:
        if (x, y) in memo:
            found = True
            val = memo[(x, y)]
            break
        keys.add((x, y))

        _gcd = gcd(x, y)

        if _gcd != 1:
            x //= _gcd
            y //= _gcd
        else:
            x += 1
            y -= 1

    keys.add((x, y))

    for k in keys:
        if k not in memo:
            if found:
                memo[k] = val
            else:
                memo[k] = x

    if found:
        return val

    return x
Esempio n. 3
0
def f(y, x=1):
    keys = set()
    found = False
    while y > 1:
        if (x, y) in memo:
            found = True
            val = memo[(x, y)]
            break
        keys.add((x, y))

        _gcd = gcd(x, y)

        if _gcd != 1:
            x //= _gcd
            y //= _gcd
        else:
            x += 1
            y -= 1

    keys.add((x, y))

    for k in keys:
        if k not in memo:
            if found:
                memo[k] = val
            else:
                memo[k] = x

    if found:
        return val

    return x
Esempio n. 4
0
def properFraction(pNume,pDeno):
	'''pNume: numerator, pDeno: Denominator	
	return [z,x,y] such that pNume/pDeno =z +  x/y and gcd(x,y) = 1'''
	t = gcd(pDeno,pNume)
	z = pNume / pDeno
	x,y = (pNume - z*pDeno)/t, pDeno/t
	return [z,x,y]
Esempio n. 5
0
def gen_triples(N):
    for m in range(1, int(N**.5) + 1):
        for n in range(1, m):
            if (m - n) % 2 and gcd(m, n) == 1:
                c = m**2 + n**2
                if c <= N:
                    a = m**2 - n**2
                    b = 2 * m * n
                    yield (a, b, c)
def gen_triples(N):
    for m in range(1, int(N**.5) + 1):            # 1
        for n in range(1, m):                     # 2
            if (m - n) % 2 and gcd(m, n) == 1:    # 3
                c = m**2 + n**2                   # 4
                if c <= N:                        # 5
                    a = m**2 - n**2               # 6
                    b = 2 * m * n                 # 7
                    yield (a, b, c)               # 8
def gen_triples(N):
    for m in range(1, int(N**.5) + 1):  #1
        for n in range(1, m):  #2
            if (m - n) % 2 and gcd(m, n) == 1:  #3
                c = m**2 + n**2  #4
                if c <= N:  #5
                    a = m**2 - n**2  #6
                    b = 2 * m * n  #7
                    yield (a, b, c)  #8
Esempio n. 8
0
def main():
	s=0
	for a in range(2,D/2+1):
		for b in range(2*a+1,min(3*a,D+1)):
			if functions.gcd(a,b) == 1:
				# print 'add:',a,b
				s+=1
			# else:	print 'delete',a,b	
	print 'answer:',s
Esempio n. 9
0
def continued_fraction(x):
    """
    Returns the continued fraction of x as a list of tuples (a,b,c),
    where:

        a + (sqrt(x)+b / c)

    represents each step.
    
    If we are interested on the notation of the form [4;(1,3,1,8)],
    we must take the first value from each tuple.

    Note: Be careful if the value passed is a perfect square.
    """
    res = []

    a = floor(x**0.5)
    b = -floor(x**0.5)
    c = 1    

    t = (a,b,c)
    res.append(t)

    while True:
        a, b, c = res[-1][0], res[-1][1], res[-1][2]
        a1 = floor(c*(x**0.5 - b)/(x - b*b))
        b1 = -b * c
        c1 = x - b*b
        b1 -= a1*c1

        _gcd = gcd(b1, c1)
        _gcd = gcd(_gcd, c)
        b1 //= _gcd
        c1 //= _gcd
        
        t = (a1, b1, c1)
        
        if t in res: # All continued fractions are periodic
            res.append(t)
            break

        res.append(t)
    
    return res
Esempio n. 10
0
def continued_fraction(x):
    """
    Returns the continued fraction of x as a list of tuples (a,b,c),
    where:

        a + (sqrt(x)+b / c)

    represents each step.
    
    If we are interested on the notation of the form [4;(1,3,1,8)],
    we must take the first value from each tuple.

    Note: Be careful if the value passed is a perfect square.
    """
    res = []

    a = floor(x**0.5)
    b = -floor(x**0.5)
    c = 1

    t = (a, b, c)
    res.append(t)

    while True:
        a, b, c = res[-1][0], res[-1][1], res[-1][2]
        a1 = floor(c * (x**0.5 - b) / (x - b * b))
        b1 = -b * c
        c1 = x - b * b
        b1 -= a1 * c1

        _gcd = gcd(b1, c1)
        _gcd = gcd(_gcd, c)
        b1 //= _gcd
        c1 //= _gcd

        t = (a1, b1, c1)

        if t in res:  # All continued fractions are periodic
            res.append(t)
            break

        res.append(t)

    return res
Esempio n. 11
0
import math
from sympy import *
from functions import gcd


def multiplyList(myList):
    result = 1
    for x in myList:
        result = result * x
    return result


res = []
size = 120000
for c in range(3, size):
    for b in range(math.ceil(c / 2), c):
        a = c - b
        if a < b < c and gcd(b, c) == 1 and gcd(a, c) == 1 and gcd(
                a, b) == 1 and multiplyList(factorint(a * b * c)) < c:
            print(a, b, c)
            res.append((a, b, c))
print(len(res))
print(sum(t[2] for t in res))
# todo overtime
Esempio n. 12
0
from functions import pythTriplet, gcd

LIMIT = 100000000

solutions = 0

for m in range(2, int(LIMIT**0.5) + 1):
    for n in range(1, m):
        if (m + n) % 2 == 0:
            continue
        if gcd(m, n) != 1:
            continue
        t = pythTriplet(m, n)

        # Reorder triplet
        if t[0] > t[1]:
            t[0], t[1] = t[1], t[0]

        if (t[2] % (t[1] - t[0])) == 0:
            perimeter = sum(t)
            solutions += LIMIT // perimeter

print(solutions)
Esempio n. 13
0
"""
The triangle 5,5,6 is a triangle in which there is a pythagorean triplet such that 3,4,5 in which there is a number n in [3,4] (not the diagonal) such that 5-2n == 1 or 5-2n == -1

Therefore, we want to generate Pythagorean triplets in which mm + nn - min(mm - nn, 2mn) == 1 or -1

We are only interested in primitive ones because the difference is increased by a factor of d.

Also, the perimeter is 2mm + 2mn
"""
from functions import pythTriplet, gcd

total_perimeter = 0

for m in range(2, 20000):
    for n in range(1, m):
        if (m + n)%2 == 0:
            continue
        if gcd(m, n) != 1:
            continue
        t = pythTriplet(m, n)
        if abs(t[2] - 2*t[1]) == 1 or abs(t[2] - 2*t[0]) == 1:
            total_perimeter += 2*(t[2] + min(t[0], t[1]))
            print(t, 'PER', total_perimeter)




Esempio n. 14
0
"""
-------------------------------------------------------
[program description]
-------------------------------------------------------
Author:  Max Dann
ID:      190274440
Email:   [email protected]
__updated__ = "2020-02-11"
-------------------------------------------------------
"""
from functions import gcd

print(gcd(9,6))
import functions

for i in range(0, 10000):
    functions.fib(20)

for i in range(0, 10000):
    functions.gcd(1234, 84, 123)

for i in range(0, 10000):
    functions.recursiveAdd(10, 3)
Esempio n. 16
0
from functions import gcd

N = 50

triples = sorted(
    #1
    (
        (a, b, c) for a, b, c in (
            #2
            ((m**2 - n**2), (2 * m * n), (m**2 + n**2))  #3
            for m in range(1,
                           int(N**.5) + 1)  #4
            for n in range(1, m)  #5
            if (m - n) % 2 and gcd(m, n) == 1  #6
        ) if c <= N),
    key=lambda *triple: sum(*triple)  #7
)

print(triples)
from functions import gcd


N = 50

triples = sorted(                                      # 1
    ((a, b, c) for a, b, c in (                        # 2
        ((m**2 - n**2), (2 * m * n), (m**2 + n**2))    # 3
        for m in range(1, int(N**.5) + 1)              # 4
        for n in range(1, m)                           # 5
        if (m - n) % 2 and gcd(m, n) == 1              # 6
    ) if c <= N), key=lambda *triple: sum(*triple)     # 7
)


print(triples)
Esempio n. 18
0
def dh():
	d = -1
	print "Do you want manualy enter settings? (y/n)"
	manual = str(raw_input("$ "))
	if manual == "n":
		while d<0:
			p = func.random_n(10,100)
			q = func.random_n(10,100)

			while len(str(p)) != len(str(q)):
				q = func.random_n(10,100)

			while p == q:
				q = func.random_n(10,100)

			n = p*q
			key = (p-1)*(q-1)
			e = func.random_n(0,10)
			while func.gcd(key,e) != 1:
				print "[ DH ] e generation failure, trying another e..."
				e = func.random_n(0,10)
			tmp = func.egcd(e,key)
			d = int(tmp[1])
		print "[ DH ] p =",p,"q =",q
		print "[ DH ] n =",n
		print "[ DH ] e =",e,"key =",key
		print "[ DH ] d =",d
	elif manual == "y":
		p = int(input("p = "))
		q = int(input("q = "))
		n = p*q
		key = (p-1)*(q-1)
		e = int(input("e = "))
		tmp = func.egcd(e,key)
		d = int(tmp[1])

	print "[ DH ] Choose 'encode' or 'decode' for proceed, or exit for quit"
	method = str(raw_input("$ "))
	while len(method) > 1:
		if method == "exit":
			os._exit(1)
		if method == "encode":
			text = str(raw_input("input text [encode] $ "))
			start_time = time.time()
			size = len(text)
			print "[ DH ] text lenght:", size

			text_int = []
			i = 0
			while i < size:
				text_int.append(ord(text[i]))
				i = i+1

			text_crypt = []
			i = 0
			while i < size:
				text_crypt.append(int(text_int[i] ** e % n))
				i = i+1

			print "[ DH ] Encrypted:",text_crypt
			print "[ DH ] Time elapsed:",time.time()-start_time, "ms"
		if method == "decode":
			text = [eval(i) for i in raw_input('input text [decode] $ ').split()]
			print text
			start_time = time.time()
			size = len(text)
			print "[ DH ] text length:",size

			text_decrypt = []
			i = 0
			while i < size:
				text_decrypt.append(chr(int(text[i] ** d % n)))
				i = i+1
			print "[ DH ] Decrypted:",text_decrypt
			print "[ DH ] Time elapsed:",time.time()-start_time, "ms"
		print "[ DH ] Type encode/decode to continue or 'exit' for exit"
		method = str(raw_input("$ "))
Esempio n. 19
0
"""
------------------------------------------------------------------------
Lab 5, Task 2 - GCD
------------------------------------------------------------------------
Author: Nicolas Mills
ID:     180856100
Email:  [email protected]
__updated__ = 2019-02-11
------------------------------------------------------------------------
"""
from functions import gcd
from random import randint

m = randint(0, 20000)
n = randint(-20000, 20000)

ans = gcd(m, n)
print("m: {}\tn: {}\tans: {}".format(m, n, ans))