def main(): # read the file with elements, strip unnecessary pieces of strings, close the file file = open("elements.txt", "r") element_list = file.readlines() for index in range(len(element_list)): element_list[index] = element_list[index].strip("\n").lower() file.close() print("Greetings! It is time to check your knowledge of ATOMIC ELEMENTS.") print( "Enter any 5 of the first 20 atomic elements from Period Table and I will give you a grade." ) user_input = input("Are you ready (y/n)?\n") if user_input.lower() == "y" or user_input.lower() == "yes": # get user input collected in a list answer_list = get_names() # distribute correct and incorrect answers in 2 separate lists correct_answers = [] incorrect_answers = [] for answer in answer_list: if answer in element_list: correct_answers.append(answer) else: incorrect_answers.append(answer) # calculate points points = calculate_score(correct_answers) # print results print_results(points, correct_answers, incorrect_answers) else: print("Sorry to see you go :(")
#print the instructions for a user print("Greetings! It is time to check your knowledge about ATOMIC ELEMENTS.") print( "Enter any 5 of the first 20 atomic elements from Period Table and I will give you a grade." ) user_input = input("Are you ready (y/n)?\n") print("******************************************************************") if user_input.lower() == "y" or user_input.lower() == "yes": # get user input collected in a list answer_list = get_names() # distribute correct and incorrect answers in 2 separate lists correct_answers = [] incorrect_answers = [] for answer in answer_list: if answer in element_list: correct_answers.append(answer) else: incorrect_answers.append(answer) # calculate points points = calculate_score(correct_answers) # print results print_results(points, correct_answers, incorrect_answers) else: print("Sorry to see you go :(")
rmse_test = [] r2_train = [] r2_test = [] for i in range(20): # split the data into training and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) w = f.ridge_regression(X_train, y_train, 0.001) # compute the best parameter w pred_train = f.predictions(X_train, w) # compute predictions on training set pred_test = f.predictions(X_test, w) # compute predictions on test set # results r2_train.append(f.r2_score( y_train, pred_train)) # compute r2 score for training predictions rmse_train.append(f.root_mse(y_train, pred_train)) # compute training error r2_test.append(f.r2_score( y_test, pred_test)) # compute r2 score for test predictions rmse_test.append(f.root_mse(y_test, pred_test)) # compute test error # print results f.print_results(r2_train, r2_test, rmse_train, rmse_test) plt.show()
print("Scrapper lancé...") arr_quotes = [] # tableau des citations + auteurs + tags URL = "https://quotes.toscrape.com" go_scrapping = True url = URL # parcours les pages tant qu'il y a des pages suivantes while go_scrapping: r = requests.get(url) soup = BeautifulSoup(r.content, "html.parser") arr_quotes = get_quotes(arr_quotes, soup, url) page = soup.find("li", attrs={"class": "next"}) go_scrapping = page is not None if go_scrapping: link = page.find("a") url = URL + link.get('href') print_quotes(arr_quotes) print_authors(arr_quotes) print_tags(arr_quotes) print_results(arr_quotes) # affichage des résultats for q in arr_quotes: print(q.content, q.author, q.tags, "\n")
from functions import is_valid, calculate_mark_needed, print_results # User Inputs current_mark = raw_input("Enter current mark (%): ") while is_valid(current_mark) == False: current_mark = raw_input("Number not valid.\nEnter current mark (%):") desired_mark = raw_input("Enter desired mark (%):") while is_valid(desired_mark) == False: desired_mark = raw_input("Number not valid.\nEnter desired mark (%):") exam_weight = raw_input("Enter exam weight (%):") while is_valid(exam_weight) == False or exam_weight == '0': exam_weight = raw_input("Number not valid.\nEnter exam weight (%):") # Convert values to floats now that they have been validated current_mark = float(current_mark) desired_mark = float(desired_mark) exam_weight = float(exam_weight) # Calculate the mark needed mark_needed = calculate_mark_needed(current_mark, desired_mark, exam_weight / 100) # Print results print_results(mark_needed, desired_mark)
from resolver import find_solution # MAIN print("Bienvenue dans ExSy !") filetext = sys.argv[1:] if not filetext or len(filetext) > 1: print("Erreur Merci de ne passer qu'un seul parametre a ExSy") sys.exit(0) try: f = open(filetext[0], 'r') except IOError: print ("Le fichier {0} n'existe pas".format(filetext[0])) sys.exit(0) print("J'analyse votre fichier !") with open(filetext[0], 'r') as file: line = file.readline() while line: if not read_a_line(line): success = 0 sys.exit(0) line = file.readline() print_results() print("\n") find_solution(letter_value, facts_list, conditions_list) print_results_facts() # resolve