Esempio n. 1
0
def get_nodes_edges(tree, root_node=None):
    ''' 返回树中所有节点和边
    '''
    Node = namedtuple('Node', ['id', 'label'])
    Edge = namedtuple('Edge', ['start', 'end'])

    nodes, edges = [], []

    if type(tree) is not dict:
        return nodes, edges

    if root_node is None:
        label = '{}: {}'.format(tree['feat_idx'], tree['feat_val'])
        root_node = Node._make([uuid.uuid4(), label])
        nodes.append(root_node)

    for sub_tree in (tree['left'], tree['right']):
        if type(sub_tree) is dict:
            node_label = '{}: {}'.format(sub_tree['feat_idx'], sub_tree['feat_val'])
        else:
            node_label = '{:.2f}'.format(sub_tree)
        sub_node = Node._make([uuid.uuid4(), node_label])
        nodes.append(sub_node)

        edge = Edge._make([root_node, sub_node])
        edges.append(edge)

        sub_nodes, sub_edges = get_nodes_edges(sub_tree, root_node=sub_node)
        nodes.extend(sub_nodes)
        edges.extend(sub_edges)

    return nodes, edges
Esempio n. 2
0
def get_nodes_edges(tree, root_node=None):
    ''' 返回树中所有节点和边
    '''
    Node = namedtuple('Node', ['id', 'label'])
    Edge = namedtuple('Edge', ['start', 'end'])

    nodes, edges = [], []

    if type(tree) is not dict:
        return nodes, edges

    if root_node is None:
        label = '{}: {}'.format(tree['feat_idx'], tree['feat_val'])
        root_node = Node._make([uuid.uuid4(), label])
        nodes.append(root_node)

    for sub_tree in (tree['left'], tree['right']):
        if type(sub_tree) is dict:
            node_label = '{}: {}'.format(sub_tree['feat_idx'],
                                         sub_tree['feat_val'])
        else:
            node_label = '{:.2f}'.format(sub_tree)
        sub_node = Node._make([uuid.uuid4(), node_label])
        nodes.append(sub_node)

        edge = Edge._make([root_node, sub_node])
        edges.append(edge)

        sub_nodes, sub_edges = get_nodes_edges(sub_tree, root_node=sub_node)
        nodes.extend(sub_nodes)
        edges.extend(sub_edges)

    return nodes, edges
Esempio n. 3
0
    def test_gross_net_calculator_answer_format(self):
        # specificially test the output format of the answer.
        Gn_shell_type = namedtuple('Gross_Net_Shell',
                                   'input_was_gross input_was_net')
        Gn_output_type = namedtuple(
            'Gross_Net_Output', 'dollars federal state fed_penalty summary')

        # input_value is what is passed to the function
        #             dollars, fed, state, fed_penalty
        # gross is the
        input_value = (5555.56, 24, 4, 0)
        input_was_gross = Gn_output_type(
            Decimal(4000).quantize(Decimal('.01'), rounding=ROUND_HALF_DOWN),
            Decimal(1333.33).quantize(Decimal('.01'),
                                      rounding=ROUND_HALF_DOWN),
            Decimal(222.22).quantize(Decimal('.01'), rounding=ROUND_HALF_DOWN),
            Decimal(0).quantize(Decimal('.01'), rounding=ROUND_HALF_DOWN),
            '''Assuming the input dollar value (${dollars:.2f}) is the Gross amount,
the Net amount is ${net:.2f},
{fed_pct:.2f}% withheld for Federal taxes is ${fed_dollars:.2f},
{state_pct:.2f}% withheld for State taxes is ${state_dollars:.2f},
and a {penalty_pct:.2f}% Federal Penalty tax is ${penalty_dollars:.2f}.'''.
            format(
                dollars=5555.56,
                net=4000,
                fed_pct=24.00,
                fed_dollars=1333.33,
                state_pct=4.00,
                state_dollars=222.22,
                penalty_pct=0.00,
                penalty_dollars=0.00,
            ),
        )
        input_was_net = Gn_output_type(
            Decimal(7716.06).quantize(Decimal('.01'),
                                      rounding=ROUND_HALF_DOWN),
            Decimal(1851.8544).quantize(Decimal('.01'),
                                        rounding=ROUND_HALF_DOWN),
            Decimal(308.64).quantize(Decimal('.01'), rounding=ROUND_HALF_DOWN),
            Decimal(0).quantize(Decimal('.01'), rounding=ROUND_HALF_DOWN),
            '''Assuming the input dollar value (${dollars:.2f}) is the Net amount,
the Gross amount is ${gross:.2f},
{fed_pct:.2f}% withheld for Federal taxes is ${fed_dollars:.2f},
{state_pct:.2f}% withheld for State taxes is ${state_dollars:.2f},
and a {penalty_pct:.2f}% Federal Penalty tax is ${penalty_dollars:.2f}.'''.
            format(
                dollars=5555.56,
                gross=7716.06,
                fed_pct=24.00,
                fed_dollars=1851.85,
                state_pct=4.00,
                state_dollars=308.64,
                penalty_pct=0.00,
                penalty_dollars=0.00,
            ),
        )
        shell = Gn_shell_type(input_was_gross, input_was_net)

        self.assertEqual(gross_net_calculator(*input_value), shell)
Esempio n. 4
0
def classroom_model(db):
    # `db` should be a fixture provided by the current dal testbench

    class Teacher(Document):
        name = fields.StrField(required=True)

        class Meta:
            register_document = False
            collection = db.teacher

    class Course(Document):
        name = fields.StrField(required=True)
        teacher = fields.ReferenceField(Teacher, required=True)

        class Meta:
            register_document = False
            collection = db.course

    class Student(Document):
        name = fields.StrField(required=True)
        birthday = fields.DateTimeField()
        courses = fields.ListField(fields.ReferenceField(Course))

        class Meta:
            register_document = False
            collection = db.student
            allow_inheritance = True

    return namedtuple('Mapping', ('Teacher', 'Course', 'Student'))(Teacher, Course, Student)
Esempio n. 5
0
def load_ppi_data(root):
    DataType = namedtuple('Dataset', ['num_classes', 'g'])
    adj_full = sp.load_npz(os.path.join(root, 'ppi', 'adj_full.npz'))
    G = dgl.from_scipy(adj_full)
    nodes_num = G.num_nodes()
    role = json.load(open(os.path.join(root, 'ppi', 'role.json'), 'r'))
    tr = list(role['tr'])
    te = list(role['te'])
    va = list(role['va'])
    mask = np.zeros((nodes_num, ), dtype=bool)
    train_mask = mask.copy()
    train_mask[tr] = True
    val_mask = mask.copy()
    val_mask[va] = True
    test_mask = mask.copy()
    test_mask[te] = True

    G.ndata['train_mask'] = torch.tensor(train_mask, dtype=torch.bool)
    G.ndata['val_mask'] = torch.tensor(val_mask, dtype=torch.bool)
    G.ndata['test_mask'] = torch.tensor(test_mask, dtype=torch.bool)

    feats = np.load(os.path.join(root, 'ppi', 'feats.npy'))
    G.ndata['feat'] = torch.tensor(feats, dtype=torch.float)

    class_map = json.load(
        open(os.path.join(root, 'ppi', 'class_map.json'), 'r'))
    labels = np.array([class_map[str(i)] for i in range(nodes_num)])
    G.ndata['label'] = torch.tensor(labels, dtype=torch.float)
    data = DataType(g=G, num_classes=labels.shape[1])
    return data
Esempio n. 6
0
def main():
    args = parse_args()
    local = namedtuple('local', ('host', 'port'))
    local.host = args.local_host
    local.port = args.local_port

    remote = namedtuple('remote', ('host', 'port'))
    remote.host = args.remote_host
    remote.port = args.remote_port

    queue = Queue()

    listen_thread = Thread(target=listen_for_packets, args=(local, queue))
    listen_thread.start()

    send_packets(target=remote, queue=queue)
Esempio n. 7
0
def classroom_model(db):
    # `db` should be a fixture provided by the current dal testbench

    class Teacher(Document):
        name = fields.StrField(required=True)

        class Meta:
            register_document = False
            collection = db.teacher

    class Course(Document):
        name = fields.StrField(required=True)
        teacher = fields.ReferenceField(Teacher, required=True)

        class Meta:
            register_document = False
            collection = db.course

    class Student(Document):
        name = fields.StrField(required=True)
        birthday = fields.DateTimeField()
        courses = fields.ListField(fields.ReferenceField(Course))

        class Meta:
            register_document = False
            collection = db.student
            allow_inheritance = True

    return namedtuple('Mapping',
                      ('Teacher', 'Course', 'Student'))(Teacher, Course,
                                                        Student)
def get_info():
    item_xpath = '//*[@id="J_ShopSearchResult"]/div/div[@class="J_TItems"]'
    source = WebDriverWait(driver, 10).until(
        EC.presence_of_element_located((By.XPATH, item_xpath)))
    '''获取名称,价格,销量,评价'''
    name = '//dd[@class="detail"]/a'
    # 名称
    price = '//dd[@class="detail"]/div/div[1]/span[2]'
    # 价格
    sale_area = '//dd[@class="detail"]/div/div[@class="sale-area"]/span'
    # 销量
    judge = '//dd[@class="rates"]/div/h4/a'
    # 评价
    source1 = source.find_elements(By.XPATH, name)
    names = [name.text for name in source1]
    source2 = source.find_elements(By.XPATH, price)
    prices = [price.text for price in source2]
    source3 = source.find_elements(By.XPATH, sale_area)
    sale_areas = [sale_area.text for sale_area in source3]
    source4 = source.find_elements(By.XPATH, judge)
    judges = [judge.text for judge in source4]
    info = namedtuple('info', row)
    how_many = len(names) - 8
    # print(len(names),len(prices),len(sale_areas),len(judges))
    # 推荐的商品没有评价
    for i in range(how_many):
        oneinfo = info(names[i], prices[i], sale_areas[i], judges[i])
        infos.append(oneinfo)
    print('Download one page')
    def test_get_grid_posititions_from_shape_exceptions(self):

        grid_str = """08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
        49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
        81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
        52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
        22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
        24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
        32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
        67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
        24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
        21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
        78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
        16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
        86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
        19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
        04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
        88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
        04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
        20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
        20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
        01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48"""
        grid = [s.split() for s in grid_str.splitlines()]
        Input = namedtuple('Input', ['shape', 'row', 'col', 'n'])
        known_exceptions = [
            (Input(self.SHAPE.VERTICAL, 19, 0, 4), IndexError),
            (Input(self.SHAPE.HORIZONTAL, 19, 19, 4), IndexError),
            (Input(self.SHAPE.HORIZONTAL, 19, 19, 4), IndexError),
        ]
        for input_, output in known_exceptions:
            #self.assertRaises(IndexError, IndexError)
            self.assertRaises(output, hf.get_grid_posititions_from_shape, grid,
                              input_.shape, input_.row, input_.col, input_.n)
Esempio n. 10
0
 def record(self, winner, chips, player_point, dealer_point):
     self.update(winner, chips, player_point, dealer_point)
     Row = namedtuple('Row', [
         'rounds', 'player_point', 'dealer_point', 'winner', 'remain_chips'
     ])
     row = Row(self.rounds, self.player_point, self.dealer_point,
               self.winner, self.remain_chips)
     self.data.append(row)
Esempio n. 11
0
    class Prompter:
        ''' -- read the queue and wait until the trigger fires
            used by the follower task to subscribe its event handlers to line updates
            Asynchronous Iterator; may be called as coroutine
            there is no way to reach StopAsyncIteration at the moment
        '''

        ### datatype to send event details back to handler
        Event = namedtuple('Event', ('ln', 'line', 'match'))

        ##############
        __slots__ = (
            'queue',
            '_trigger',
            '_file',
        )

        def __init__(
            self,
            queue: curio.Queue,
            trigger: Trigger,
            file: Path,
        ):
            self.queue = queue
            self._trigger = trigger
            self._file = file

        @property
        def trigger(self):
            return self._trigger

        @property
        def file(self):
            return self._file

        ##############
        async def __anext__(self):
            ''' async block until the queue produces a line that activates the trigger.
                never reaches stop iteration
            '''
            while True:
                (line, ln) = await self.queue.get()
                match = self.trigger.check(line)
                if match is not None:
                    return self.Event(ln, line, match)
            raise StopAsyncIteration

        def __aiter__(self):
            ''' Prompter object is an async iterator '''
            return self

        async def __call__(self):
            ''' Prompter object is a coroutine'''
            try:
                return await self.__anext__()
            except StopAsyncIteration:
                raise  # do what
Esempio n. 12
0
class BoundedProperty(namedtuple("BoundedProperty", ["min", "max", "delta"])):
    def __new__(cls, minimum, maximum, delta=None):
        if delta is None:
            delta = abs(maximum - minimum)
        return super().__new__(cls, minimum, maximum, delta)

    def interpolate(self, val):
        result = (self.max - val) / self.delta
        return 1.0 - bound(0, result, 1)
Esempio n. 13
0
    def test_hex_tile_generator_known_answer(self):
        Ans = namedtuple('Ans', ['input', 'ans'])
        known_answers = [
            Ans('builtin1', [2, 1, 4, 3, 5]),
            Ans('ordered5', [1, 2, 3, 4, 5]),
        ]

        for ans in known_answers:
            test_te = list(te.hex_tile_generator(ans.input))
            self.assertListEqual(ans.ans, test_te)
Esempio n. 14
0
def load_data(args):
    '''Wraps the dgl's load_data utility to handle ppi special case'''
    DataType = namedtuple('Dataset', ['num_classes', 'g'])
    if args.dataset == 'amazon2m':
        amazon_data = AmazonDataset()
        DataType = namedtuple('Dataset', ['num_classes', 'g'])
        data = DataType(g=amazon_data[0], num_classes=amazon_data.num_classes)
        return data
    elif args.dataset == 'ppi':
        train_dataset = PPIDataset('train')
        train_graph = dgl.batch([train_dataset[i] for i in range(len(train_dataset))], edge_attrs=None, node_attrs=None)
        val_dataset = PPIDataset('valid')
        val_graph = dgl.batch([val_dataset[i] for i in range(len(val_dataset))], edge_attrs=None, node_attrs=None)
        test_dataset = PPIDataset('test')
        test_graph = dgl.batch([test_dataset[i] for i in range(len(test_dataset))], edge_attrs=None, node_attrs=None)
        G = dgl.batch(
            [train_graph, val_graph, test_graph], edge_attrs=None, node_attrs=None)

        train_nodes_num = train_graph.number_of_nodes()
        test_nodes_num = test_graph.number_of_nodes()
        val_nodes_num = val_graph.number_of_nodes()
        nodes_num = G.number_of_nodes()
        assert (nodes_num == (train_nodes_num + test_nodes_num + val_nodes_num))
        # construct mask
        mask = np.zeros((nodes_num,), dtype=bool)
        train_mask = mask.copy()
        train_mask[:train_nodes_num] = True
        val_mask = mask.copy()
        val_mask[train_nodes_num:-test_nodes_num] = True
        test_mask = mask.copy()
        test_mask[-test_nodes_num:] = True

        G.ndata['train_mask'] = torch.tensor(train_mask, dtype=torch.bool)
        G.ndata['val_mask'] = torch.tensor(val_mask, dtype=torch.bool)
        G.ndata['test_mask'] = torch.tensor(test_mask, dtype=torch.bool)

        data = DataType(g=G, num_classes=train_dataset.num_labels)
        return data
    else:
        dataset = _load_data(args)
        data = DataType(g=dataset[0], num_classes=dataset.num_classes)
        return data
Esempio n. 15
0
File: utils.py Progetto: yifeim/dgl
def load_data(args, multilabel):
    if not os.path.exists('graphsaintdata') and not os.path.exists('data'):
        raise ValueError("The directory graphsaintdata does not exist!")
    elif os.path.exists('graphsaintdata') and not os.path.exists('data'):
        os.rename('graphsaintdata', 'data')
    prefix = "data/{}".format(args.dataset)
    DataType = namedtuple('Dataset', ['num_classes', 'train_nid', 'g'])

    adj_full = scipy.sparse.load_npz(
        './{}/adj_full.npz'.format(prefix)).astype(np.bool)
    g = dgl.from_scipy(adj_full)
    num_nodes = g.num_nodes()

    adj_train = scipy.sparse.load_npz(
        './{}/adj_train.npz'.format(prefix)).astype(np.bool)
    train_nid = np.array(list(set(adj_train.nonzero()[0])))

    role = json.load(open('./{}/role.json'.format(prefix)))
    mask = np.zeros((num_nodes, ), dtype=bool)
    train_mask = mask.copy()
    train_mask[role['tr']] = True
    val_mask = mask.copy()
    val_mask[role['va']] = True
    test_mask = mask.copy()
    test_mask[role['te']] = True

    feats = np.load('./{}/feats.npy'.format(prefix))
    scaler = StandardScaler()
    scaler.fit(feats[train_nid])
    feats = scaler.transform(feats)

    class_map = json.load(open('./{}/class_map.json'.format(prefix)))
    class_map = {int(k): v for k, v in class_map.items()}
    if multilabel:
        # Multi-label binary classification
        num_classes = len(list(class_map.values())[0])
        class_arr = np.zeros((num_nodes, num_classes))
        for k, v in class_map.items():
            class_arr[k] = v
    else:
        num_classes = max(class_map.values()) - min(class_map.values()) + 1
        class_arr = np.zeros((num_nodes, ))
        for k, v in class_map.items():
            class_arr[k] = v

    g.ndata['feat'] = torch.tensor(feats, dtype=torch.float)
    g.ndata['label'] = torch.tensor(
        class_arr, dtype=torch.float if multilabel else torch.long)
    g.ndata['train_mask'] = torch.tensor(train_mask, dtype=torch.bool)
    g.ndata['val_mask'] = torch.tensor(val_mask, dtype=torch.bool)
    g.ndata['test_mask'] = torch.tensor(test_mask, dtype=torch.bool)

    data = DataType(g=g, num_classes=num_classes, train_nid=train_nid)
    return data
Esempio n. 16
0
class Dep(
        namedtuple('dep',
                   ['inputs', 'outputs', 'rule', 'params', 'use_existing'])):
    def __new__(cls, inputs, outputs, rule, params=None, use_existing=False):
        if not isinstance(inputs, list):
            inputs = [inputs]
        if not isinstance(outputs, list):
            outputs = [outputs]
        if params is None:
            params = {}

        return super().__new__(cls, inputs, outputs, rule, params,
                               use_existing)
Esempio n. 17
0
 def record(self, winner, chips, player_point, dealer_point):
     self.update(winner, chips, player_point, dealer_point)
     Row = namedtuple("Row", [
         "rounds", "player_point", "dealer_point", "winner", "remain_chips"
     ])
     row = Row(
         self.rounds,
         self.player_point,
         self.dealer_point,
         self.winner,
         self.remain_chips,
     )
     self.data.append(row)
Esempio n. 18
0
def final_function(ones):
    df = create_blocks(ones)
    sinking, sink = create_sinking_df(df)
    r_f_splits = [split_columns(df, sinking, col, sink) for col in sinking]
    sinking = [x['sinking'] for x in r_f_splits if 'sinking' in x.keys()]
    sinking = pd.DataFrame(list(chain.from_iterable(sinking)))
    sinking.name = 'sinking'

    rising = [x['rising'] for x in r_f_splits if 'rising' in x.keys()]
    rising = pd.DataFrame(list(chain.from_iterable(rising)))
    rising.name = 'rising'

    result = namedtuple('result', 'rising, sinking')
    return result(rising.T, sinking.T)
Esempio n. 19
0
def load_data(args):
    '''Wraps the dgl's load_data utility to handle ppi special case'''
    if args.dataset != 'ppi':
        return _load_data(args)
    train_dataset = PPIDataset('train')
    val_dataset = PPIDataset('valid')
    test_dataset = PPIDataset('test')
    PPIDataType = namedtuple('PPIDataset', [
        'train_mask', 'test_mask', 'val_mask', 'features', 'labels',
        'num_labels', 'graph'
    ])
    G = dgl.BatchedDGLGraph(
        [train_dataset.graph, val_dataset.graph, test_dataset.graph],
        edge_attrs=None,
        node_attrs=None)
    G = G.to_networkx()
    # hack to dodge the potential bugs of to_networkx
    for (n1, n2, d) in G.edges(data=True):
        d.clear()
    train_nodes_num = train_dataset.graph.number_of_nodes()
    test_nodes_num = test_dataset.graph.number_of_nodes()
    val_nodes_num = val_dataset.graph.number_of_nodes()
    nodes_num = G.number_of_nodes()
    assert (nodes_num == (train_nodes_num + test_nodes_num + val_nodes_num))
    # construct mask
    mask = np.zeros((nodes_num, ), dtype=bool)
    train_mask = mask.copy()
    train_mask[:train_nodes_num] = True
    val_mask = mask.copy()
    val_mask[train_nodes_num:-test_nodes_num] = True
    test_mask = mask.copy()
    test_mask[-test_nodes_num:] = True

    # construct features
    features = np.concatenate(
        [train_dataset.features, val_dataset.features, test_dataset.features],
        axis=0)

    labels = np.concatenate(
        [train_dataset.labels, val_dataset.labels, test_dataset.labels],
        axis=0)

    data = PPIDataType(graph=G,
                       train_mask=train_mask,
                       test_mask=test_mask,
                       val_mask=val_mask,
                       features=features,
                       labels=labels,
                       num_labels=121)
    return data
Esempio n. 20
0
def get_nodes_edges(tree, root_node=None):
    '''
    返回决策树所有节点和边
    '''
    Node = namedtuple('Node', ['id', 'label'])  # 使用名称索引,避免内存越界
    Edge = namedtuple('Edge', ['start', 'end'])

    nodes, edges = [], []

    if type(tree) is not dict:  # 递归终止条件,决策树不可继续划分
        return nodes, edges

    if root_node is None:  # 根节点为空,则从空节点开始
        # 难道Tree的ID即本节点的feature ID?
        label = '{}: {}'.format(tree['feat_id'], tree['feat_val'])
        root_node = Node._make([uuid.uuid4(), label])  # 从 iterable 对象中创建新的实例
        nodes.append(root_node)

    for sub_tree in [tree['left'], tree['right']]:  # 遍历左右子树
        if type(sub_tree) is dict:  # 非叶子结点
            node_label = '{}: {}'.format(
                sub_tree['feat_id'], sub_tree['feat_val'])
        else:
            node_label = '{}'.format(sub_tree)  # 叶子结点, 叶子节点的值
        sub_node = Node._make([uuid.uuid4(), node_label])  # 创建子节点
        nodes.append(sub_node)  # 插入子节点

        edge = Edge._make([root_node, sub_node])  # 创建边
        edges.append(edge)  # 插入边

        # 递归子树, 获取子树的节点和边
        sub_nodes, sub_edges = get_nodes_edges(sub_tree, root_node=sub_node)
        nodes.extend(sub_nodes)
        edges.extend(sub_edges)

    return nodes, edges
Esempio n. 21
0
File: nodes.py Progetto: stsewd/lira
    def __init__(self, *children, **options):
        self.content = None
        """Raw content of the node"""

        self.children = []
        """List of children of this node"""

        OptionsProxy = namedtuple("OptionsProxy", self.valid_options)
        self.options = OptionsProxy(**options)
        """Named tuple with the options for this node"""

        if self.is_terminal:
            if children:
                self.content = children[0]
        else:
            self.children = list(children)
Esempio n. 22
0
def main():
    global args
    args = parse_args()

    client_condition = not args.listen and args.port > 0
    listen_condition = args.listen and args.port > 0

    target = namedtuple('target', ('host', 'port'))
    target.host = args.host
    target.port = args.port

    if client_condition:
        print('Clienting')
        run_client_loop(target)
    elif listen_condition:
        print('Listening')
        run_server_loop(target)
Esempio n. 23
0
    def test_hex_tile_generator_random(self):
        RandBuiltins = namedtuple('RandBuiltins',
                                  ['builtin', 'n', 'tile_stack'])

        known_answers = [
            RandBuiltins('random', 29, None),
            RandBuiltins('random', 10, None),
            RandBuiltins('random', 13, None),
        ]

        for ans in known_answers:
            test_te = list(
                te.hex_tile_generator(builtin=ans.builtin,
                                      n=ans.n,
                                      tile_stack=ans.tile_stack))
            print('n={}, output={}'.format(ans.n, test_te))
            self.assertEqual(len(test_te), ans.n)
Esempio n. 24
0
def gen_pythagorean_triplet(min_c=5, max_c=100):
    """ Returns the next set of Pythagorean triplets as a tuple (a, b, c).
    Up to max_c
    for a**2 + b**2 == c**2 and a < b
    Generator
    """
    # Originally for problem 9
    # TDD
    Pythag = namedtuple('Pythag', 'a b c')
    return_tuple = Pythag(3, 4, 5)

    for c in range(min_c, max_c):
        for a in range(1, c):
            for b in range(a + 1, c):
                if a**2 + b**2 == c**2 and a < b:
                    return_tuple = Pythag(a, b, c)
                    yield return_tuple
Esempio n. 25
0
class Dictionary(object):
  '''Build a trie dictionary out of words defined in vocab.'''

  Match = namedtuple('Match', 'prefix isword prefix_words')

  def __init__(self, vocab=None):
    defaultdict_maker = lambda: defaultdict(defaultdict_maker)
    self._prefix_tree = defaultdict(defaultdict_maker)
    self.extend(vocab or [])

  def add(self, word):
    it = self._prefix_tree
    for ch in word:
      it = it[ch]
    it[''] = True

  def extend(self, words):
    for word in words:
      self.add(word)

  def partial_match(self, text):
    return Match()

  def prefix_words(self, text):
    it = self._prefix_tree
    for i, ch in enumerate(text):
      it = it.get(ch, None)
      if it is None:
        break
      if '' in it:
        yield text[:i+1]

  def isword(self, word):
    match = self.partial_match(word)
    return match is not None and match.isword

  def print(self):
    def print_dictionary(it=self, i=0):
      for k, v in it.items():
        if v is True:
          print('{}EOW'.format(' '*i*2))
        else:
          print('{}{}:'.format(' '*i*2, k))
          print_dictionary(v, i+1)
    print_dictionary()
Esempio n. 26
0
def zipsource():
    Fo = namedtuple("Fo", ("filename", "is_dir"))
    zipsource = LocalTargetAndZipSource("", "")
    zipsource.zip = Mock()
    zipsource.zip.filelist = [
        Fo("src/", lambda: True),
        Fo("src/en/", lambda: True),
        Fo("src/en/to", lambda: False),
        Fo("src/en/tre", lambda: False),
    ]

    def namelist():
        for i in ("src/", "src/en/", "src/en/to", "src/en/tre"):
            yield i

    zipsource.zip.namelist = namelist
    zipsource.zip.read.return_value = b"data"
    return zipsource
Esempio n. 27
0
def classroom_model(instance):

    @instance.register
    class Teacher(Document):
        name = fields.StrField(required=True)

    @instance.register
    class Course(Document):
        name = fields.StrField(required=True)
        teacher = fields.ReferenceField(Teacher, required=True, allow_none=True)

    @instance.register
    class Student(Document):
        name = fields.StrField(required=True)
        birthday = fields.DateTimeField()
        courses = fields.ListField(fields.ReferenceField(Course))

    return namedtuple('Mapping', ('Teacher', 'Course', 'Student'))(Teacher, Course, Student)
Esempio n. 28
0
    def test_bad_lazy_collection(self, dal_moke):

        # Bad `dal` attribute
        with pytest.raises(exceptions.NoCollectionDefinedError) as exc:

            class Doc7(Document):

                class Meta:
                    lazy_collection = lambda: None

                    class dal:
                        pass
        assert exc.value.args[0] == (
            "`dal` attribute must be a subclass of <class 'umongo.abstract.AbstractDal'>")

        # Invalid lazy_collection's dal
        LazyCollection = namedtuple('LazyCollection', ('dal', 'load'))

        class BadDal:
            pass

        def load_collection():
            pass

        with pytest.raises(exceptions.NoCollectionDefinedError) as exc:
            class Doc8(Document):
                class Meta:
                    lazy_collection = LazyCollection(BadDal, load_collection)
        assert exc.value.args[0] == (
            "`dal` attribute must be a subclass of <class 'umongo.abstract.AbstractDal'>")

        # Invalid lazy_collection's load
        class GoodDal(AbstractDal):
            @staticmethod
            def io_validate_patch_schema(schema):
                pass

        class Doc9(Document):
            class Meta:
                lazy_collection = LazyCollection(GoodDal, load_collection)

        with pytest.raises(exceptions.NoCollectionDefinedError) as exc:
            Doc9.collection
        assert exc.value.args[0] == "lazy_collection didn't returned a collection"
Esempio n. 29
0
def list_to_pagination(items, already_sliced=False, page=1, per_page=None,
                       total=None, **kwargs):
    """
    Convert the given list to a :class:`Pagination` object

    :param already_sliced: If true, don't slice the given items with
        page/per_page arguments
    """
    if page < 1:
        raise ValueError('page must be > 0')
    total = total or len(items)
    per_page = per_page or total
    fields = ['items', 'page', 'per_page', 'total']
    if kwargs:
        fields += list(kwargs.keys())
    Pagination = namedtuple('Pagination', fields)
    if not already_sliced:
        items = items[(page - 1) * per_page: page * per_page]
    return Pagination(items, page, per_page, total, **kwargs)
Esempio n. 30
0
def classroom_model(instance):

    @instance.register
    class Teacher(Document):
        name = fields.StrField(required=True)

    @instance.register
    class Course(Document):
        name = fields.StrField(required=True)
        teacher = fields.ReferenceField(Teacher, required=True)

    @instance.register
    class Student(Document):
        name = fields.StrField(required=True)
        birthday = fields.DateTimeField()
        courses = fields.ListField(fields.ReferenceField(Course))

        class Meta:
            allow_inheritance = True

    return namedtuple('Mapping', ('Teacher', 'Course', 'Student'))(Teacher, Course, Student)
Esempio n. 31
0
def another_test_user(app):
    TestUser = namedtuple(
        'TestUser', ['email', 'password', 'id', 'auth_headers']
    )

    with app.app_context():
        email = '*****@*****.**'
        password = '******'

        user = User(email=email,
                    password=guard.encrypt_password(password),
                    is_verified=True)

        db.session.add(user)
        db.session.commit()

        headers = {'Authorization': 'Bearer %s' % guard.encode_jwt_token(user)}

        return TestUser(email=email,
                        password=password,
                        id=user.id,
                        auth_headers=headers)
Esempio n. 32
0
def _get_clusters_based_on_tree_level(lvl, link):
    LVL = namedtuple("Level","members,lvl")
    clusters = [LVL(members=[x], lvl=0) for x in range(link.shape[0]+1)]
    for i in range(link.shape[0]):
        ix_1,ix_2 = int(link[i][0]), int(link[i][1])
        group = clusters[ix_1].members + clusters[ix_2].members
        max_group_number = max(clusters[ix_1].lvl,clusters[ix_2].lvl)
        clusters[ix_1] = LVL(members=clusters[ix_1].members, lvl=max_group_number)
        clusters[ix_2] = LVL(members=clusters[ix_2].members, lvl=max_group_number)
        new_lvl = max_group_number + 1
        clusters.append(LVL(members=sorted(group), lvl=new_lvl))
    maximum_lvl = clusters[-1].lvl
    clusters = [LVL(x.members,maximum_lvl-x.lvl) for x in clusters]

    selection = [x for x in clusters if x.lvl==lvl]
    lvl -= 1
    while lvl > 0:
        candidates = [x for x in clusters if x.lvl==lvl]
        winner = [x for x in candidates if not set(selection[0].members).issubset(set(x.members))]
        selection.append(winner[0])
        lvl -= 1
    return [s.members for s in selection]
Esempio n. 33
0
 def from_string(cls, format_str):
     """ 
         Create a buffer format from a string. Generated buffer format are
         cached, so this function is not expensive to call.
         
         A format string is composed of N format token.
         A format token follow these rules: ({number}{format char})[{name}]
         Whitespaces are ignored.
         
         Available format char:
           f: float
           d: double
           b: byte
           B: unsigned Byte
           s: short
           S: unsigned short
           i: int
           I: unsigned int            
         
         Example:
             "(3i)[vertex](4f)[color]"
             "(4f)[foo] (4f)[bar] (4d)[yolo]"
     """
     format_str = format_str.replace(' ', '')
     format_str_2 = ""
     
     if len(format_str) == 0:
         raise BufferFormatError('Format must be present')
     
     # Create the tokens
     tokens, offset = [], 0
     for match in BufferFormat.pattern.finditer(format_str):
         groups = match.groups()
         
         _type, gl_type = BUFFER_FORMAT_TYPES_MAP.get(groups[1])
         size=int(groups[0])
         
         name=groups[2]
         name_match = pyvars.match(name)
         if name_match is None or name_match.span() != (0, len(name)):
             raise ValueError('"{}" is not a valid variable name'.format(name))
         
         token = BufferFormat.token(size=size, type=_type*size, name=name, gl_type=gl_type, offset=offset)
         tokens.append(token)
         offset += sizeof(token.type)
         format_str_2 += format_str[match.start():match.end()]
         
     if format_str_2 != format_str:
         raise BufferFormatError('Format string is not valid')
             
     bformat = super().__new__(cls)
     
     # Save the tokens
     bformat.tokens = tokens        
     
     # Build the item
     bformat.item = namedtuple('V', [t.name for t in tokens])
     
     # Build the structure
     struct_fields = [(t.name, t.type) for t in tokens]
     bformat.struct = type('BufferStruct', (Structure,), {'_fields_': struct_fields})
     
     return bformat
Esempio n. 34
0
# pylint: disable=redefined-builtin,redefined-outer-name,missing-docstring
# pylint: disable=too-few-public-methods,no-self-use,arguments-differ
# pylint: disable=dangerous-default-value,redefined-builtin,too-many-arguments
# pylint: disable=abstract-method

import os
import pickle
from functools import namedtuple, update_wrapper, wraps

import psutil
import redis

from . import config, constants

_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "currsize"])


def memory_full():
    """Check if the memory is too full for further caching."""
    current_process = psutil.Process(os.getpid())
    return (current_process.memory_percent() >
            config.MAXIMUM_CACHE_MEMORY_PERCENTAGE)


class _HashedSeq(list):
    """This class guarantees that ``hash()`` will be called no more than once
    per element.  This is important because the ``lru_cache()`` will hash the
    key multiple times on a cache miss.
    """
Esempio n. 35
0
from functools import namedtuple

from barracuda.components.ai_component import AIComponent
from barracuda.components.status_component import StatusComponent
# from barracuda.components.render_component import RenderComponent
from barracuda.tools import Vect2D


class PositionComponent(Vect2D):
    pass

RenderComponent = namedtuple('RenderComponent', ())
# AIComponent = namedtuple('AIComponent', ())


# __all__ = ('AIComponent', 'BehaviorComponent', 'BehaviorActions',
#            'StatusComponent', 'RenderComponent')

HealerComponent = namedtuple('HealerComponent', ('power', ))
AttackerComponent = namedtuple('AttackerComponent', ('power', ))
# AIComponent = namedtuple('AIComponent', ())
Esempio n. 36
0
 def __init__(self, page_number, total_pages, count):
     self.number = page_number
     Paginator = namedtuple('Paginator', ['num_pages', 'count'])
     self.paginator = Paginator(total_pages, count)
Esempio n. 37
0
from functools import namedtuple
from rwlock import RWLock

Message = namedtuple("Message", ["text", "login", "time"])


class ChatMessageStore:
    def __init__(self):
        self.__id = 1
        self.__storage = []
        self.__rwlock = RWLock()

    def add_message(self, message):
        self.__rwlock.acquire_write()
        self.__storage.append((self.__id, message))
        self.__id += 1
        self.__rwlock.release()

    def get_messages(self, start_id=0):
        self.__rwlock.acquire_read()
        result = ([message for id_, message in self.__storage if id_ >= start_id], self.__id)
        self.__rwlock.release()

        return result
Esempio n. 38
0
from functools import namedtuple
from ecs import Component


KeyBind = namedtuple('KeyBind', ('key', 'callback', 'type'))


class InputComponent(Component):

    def __init__(self, keymap=None):
        super().__init__()
        self.keymap = []

    def add_keybind(self, key, callback, type='default'):
        self.keymap.append(KeyBind(key, callback, type))
Esempio n. 39
0
import threading
from functools import namedtuple
from concurrent import futures
import time
import csv

import requests

header = ["aid", "view", "danmaku", "reply", "favorite", "coin", "share"]
Video = namedtuple('Video', header)
headers = {
    'X-Requested-With':
    'XMLHttpRequest',
    'User-Agent':
    'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
    'Chrome/56.0.2924.87 Safari/537.36'
}
total = 1
result = []
lock = threading.Lock()


def run(url):
    """ 启动爬虫
    """
    global total
    req = requests.get(url, headers=headers, timeout=6).json()
    time.sleep(0.5)  # 延迟,避免太快 ip 被封
    try:
        data = req['data']
        video = Video(
Esempio n. 40
0
from functools import namedtuple
from blinker import signal


move_event = signal('move')
action_event = signal('action')

HealAction = namedtuple('HealAction', ('power', ))
AttackAction = namedtuple('AttackAction', ('power', ))

# MoveEvent = namedtuple('MoveEvent', ('entity', 'start_pos', 'end_pos'))
# ActionEvent = namedtuple('AttackEvent', ('entity_actor', 'entity_target', 'action'))
Esempio n. 41
0
"""
# file : bilibili.py
# author : shao
# date: 2017/11/3 0003
"""
import csv
import threading
import time
from concurrent import futures
from functools import namedtuple

import MySQLdb
import requests

header = ["aid", "view", "danmaku", "reply", "favorite", "coin", "share"]
Video = namedtuple('Video', header)
headers = {
    'X-Requested-With': 'XMLHttpRequest',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
    'Chrome/56.0.2924.87 Safari/537.36'}
total = 1
result = set()
lock = threading.Lock()


def run(url):
    """ 启动爬虫
    """
    global total
    req = requests.get(url, headers=headers, timeout=6).json()
    time.sleep(0.6)     # 延迟,避免太快 ip 被封
Esempio n. 42
0
from ctypes import byref, Structure, cast, POINTER, sizeof, c_void_p
from functools import lru_cache, namedtuple
from collections.abc import Sequence
from sys import modules

#Loaded extensions name are added in here
LOADED_EXTENSIONS = []

BUFFER_FORMAT_TYPES_MAP = { 'f': (GLfloat, GL_FLOAT), 'd': (GLdouble, GL_DOUBLE),
                            'b': (GLbyte, GL_BYTE), 'B': (GLubyte, GL_UNSIGNED_BYTE),
                            'i': (GLint, GL_INT), 'I': (GLuint, GL_UNSIGNED_INT),
                            's': (GLshort, GL_SHORT), 'S': (GLushort, GL_UNSIGNED_SHORT)}
                            
pyvars = re.compile('[_a-zA-Z][_\w]+')

map_info = namedtuple('MappingInformation', ['access', 'target', 'ptr', 'size'])

def ptr_array(arr):
    " Cast an array in a pointer "
    return cast(arr, POINTER(arr._type_))
    
def eval_index(index, length):
    if index < 0 and index >= (-length) :  
        return length+index
    elif index >= length:
        raise IndexError('Index "{}" out of bound, buffer has a length of "{}"'.format(index, length))
    elif index < (-length):
        raise IndexError('Index "{}" out of bound, buffer has a length of "{}"'.format(index, length))
        
    return index
Esempio n. 43
0
 def __init__(self, min, max, c_min=Color((1,0,0)), c_max=Color((0,1,0))):
     super().__init__()
     Thickness = namedtuple("Thickness", ["min", "max", "delta"])
     Col = namedtuple("Color", ["min", "max"])
     self.thickness = Thickness(min, max, max - min)
     self.color = Col(c_min, c_max)
Esempio n. 44
0
from functools import namedtuple

EConst = namedtuple('EConst', 'val')
EVar = namedtuple('EVar', 'name')
EAbs = namedtuple('EAbs', ['arg', 'body'])
EApp = namedtuple('EApp', ['func', 'arg'])
ELet = namedtuple('ELet', ['var', 'val', 'body'])

TBase = namedtuple('TBase', 'name')
TVar = namedtuple('TVar', 'name')
TFunc = namedtuple('TFunc', ['arg', 'result'])

TScheme = namedtuple('TScheme', ['bound_types', 'type'])

TInt = TBase('TInt')
TBool = TBase('TBool')

def substitute(substitution, type_):
    if isinstance(type_, TBase):
        return type_
    if isinstance(type_, TVar):
        if type_ in substitution:
            return substitution[type_]
        return type_
    if isinstance(type_, TFunc):
        return TFunc(substitute(substitution, type_.arg),
                     substitute(substitution, type_.result))
    if isinstance(type_, TScheme):
        new_subs = {find:replace for find,replace in substition.items()
                    if find not in type_.bound_types}
        return TScheme(type_.bound_types, substitute(new_subs, type_.type))
Esempio n. 45
0
__author__ = 'dm'

from functools import namedtuple

Point = namedtuple('Point', 'x y')
IJPoint = namedtuple('IJPoint', 'i j')
Esempio n. 46
0
Defense+3   80     0       3
"""
rings = [Item(ring.split()) for ring in rings.strip().splitlines()]


def shopping():
    from itertools import combinations as comb
    for w in list(comb(weapons, 1)):
        for a in list(comb(armors, 0)) + list(comb(armors, 1)):
            for r in list(comb(rings, 0)) + list(comb(rings, 1)) + list(comb(rings, 2)):
                yield list(w) + list(a) + list(r)


from functools import namedtuple

Person = namedtuple('Person', ['hp', 'attack', 'defense'])


def defeat(p1: Person, p2: Person):
    while p1.hp > 0 and p2.hp > 0:
        hit = max(1, p1.attack - p2.defense)
        p2 = p2._replace(hp=p2.hp - hit)
        p1 = p1._replace(hp=p1.hp - max(1, p2.attack - p1.defense))
    return p2.hp <= 0


# Boss
# Hit Points: 103
# Damage: 9
# Armor: 2
Esempio n. 47
0
Memory-aware LRU Cache function decorator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A modification of the builtin ``functools.lru_cache`` decorator that takes an
additional keyword argument, ``use_memory_up_to``. The cache is considered full
if there are fewer than ``use_memory_up_to`` bytes of memory available.

If ``use_memory_up_to`` is set, then ``maxsize`` has no effect.

Uses the ``psutil`` module to get the available memory.
"""

import psutil
from functools import RLock, update_wrapper, namedtuple

_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])

class _HashedSeq(list):
    """ This class guarantees that hash() will be called no more than once
        per element.  This is important because the lru_cache() will hash
        the key multiple times on a cache miss.

    """

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
        self[:] = tup
        self.hashvalue = hash(tup)

    def __hash__(self):
Esempio n. 48
0
import subprocess
import shutil
import json
import wave
import os
import io
import logging
from functools import namedtuple
from synthesizer.sample import Sample


__all__ = ["AudiofileToWavStream", "StreamMixer", "VolumeFilter", "EndlessFramesFilter", "SampleStream"]

log = logging.getLogger("synthesizer.streaming")

AudioFormatProbe = namedtuple("AudioFormatProbe", ["rate", "channels", "sampformat", "fileformat", "duration"])


class AudiofileToWavStream(io.RawIOBase):
    """
    Streams WAV PCM audio data from the given sound source file.
    If the file is not already a .wav, and/or you want to resample it,
    ffmpeg/ffprobe are used to convert it in the background.
    For HQ resampling, ffmpeg has to be built with libsoxr support.

    Input: audio file of any supported format
    Output: stream of audio data in WAV PCM format
    """
    ffmpeg_executable = "ffmpeg"
    ffprobe_executable = "ffprobe"
    )
from _freestyle import (
    blendRamp,
    evaluateColorRamp,
    evaluateCurveMappingF,
    )

import time

from mathutils import Vector
from math import pi, sin, cos, acos, radians
from itertools import cycle, tee
from functools import namedtuple

# named tuple primitives used for storing data.
Thickness = namedtuple("Thickness", ["min", "max", "delta"])
Range = namedtuple("Range", ["min", "max", "delta"])
Value = namedtuple("Value", ["min", "max", "delta"])


class ColorRampModifier(StrokeShader):
    """Primitive for the color modifiers """
    def __init__(self, blend, influence, ramp):
        StrokeShader.__init__(self)
        self.blend = blend
        self.influence = influence
        self.ramp = ramp

    def evaluate(self, t):
        col = evaluateColorRamp(self.ramp, t)
        return col.xyz  # omit alpha
Esempio n. 50
0
@lru_cache(maxsize=32)
def phase_to_direction(length):
    """
    Returns a list of tuples each containing:
    - the phase
    - a Vector with the values of the cosine and sine of 2pi * phase  (the direction)
    """
    results = list()
    for i in range(length):
        phase = i / (length - 1)
        results.append((phase, Vector((cos(2 * pi * phase), sin(2 * pi * phase)))))
    return results

# A named tuple primitive used for storing data that has an upper and
# lower bound (e.g., thickness, range and certain values)
BoundedProperty = namedtuple("BoundedProperty", ["min", "max", "delta"])


class BoundingBox:
    """Object representing a bounding box consisting out of 2 2D vectors"""

    __slots__ = (
        "minimum",
        "maximum",
        "size",
        "corners",
        )

    def __init__(self, minimum: Vector, maximum: Vector):
        self.minimum = minimum
        self.maximum = maximum