Esempio n. 1
0
def pickRegex(keys: Sequence[str], doc: Dict) -> Dict:
    if not isinstance(doc, dict):
        return None

    regex_keys = _.map(__regTest__, keys)

    return pick(
        _.filter(lambda k: sum(_.map(lambda reg: reg(k), regex_keys)) > 0,
                 doc.keys()), doc)
Esempio n. 2
0
def generateHist(leaf: Dict, names: List) -> None:
    x_keys = PIPE(leaf.keys())
    y_cnt = _.concat(*_.map(lambda i: [i] * leaf[str(i)]['cnt'], x_keys))

    n, bins, patches = plt.hist(y_cnt,
                                rwidth=0.8,
                                log=True,
                                range=(-5, 5),
                                color=Blue.A700)
    ax = plt.gca()

    ax.set_xlabel("val2")
    ax.set_ylabel("log Frequency")

    plt.savefig('_'.join(names) + ".svg")
Esempio n. 3
0
    def apply(self, arr: List[float], yValueIndex: int = None):
        """
      arr = [x1, x2, x3, ...]
    """

        if self.__data__ is None:
            self.initialize()

        if isinstance(arr, numbers.Number):
            arr = [arr]

        inds = _.map(\
          lambda val, ind:  self.func[ind](self.__min__[ind], self.__max__[ind], self.__bin_width__[ind], self.__bin_number__[ind]-1, val),\
          arr,\
          range(len(arr))\
        )

        # Points outside the set limits are ignored.
        if None in inds:
            return self

        # CNT only for now
        self.__data__.set(inds, self.__data__.get(inds) + 1)

        return self
Esempio n. 4
0
def generateBarChart(leaf: Dict, names: List) -> None:
    x_keys = PIPE(leaf.keys())
    y_cnt = _.map(lambda i: math.log10(leaf[str(i)]['cnt']), x_keys)

    plt.bar(x_keys, y_cnt, width=0.1)
    ax = plt.gca()

    ax.set_xlabel("log val2")
    ax.set_ylabel("log Frequency")
    ax.set_xlim([-5, 5])

    plt.savefig('_'.join(names) + ".svg")
Esempio n. 5
0
def streamFromFiles(
        files: List[str]) -> Generator[List[List[float]], None, None]:
    streamList = _.map(lambda f: fileStream(f), files)

    for stream in streamList:
        while stream:
            s = next(stream, None)
            if s == None:
                break
            else:
                yield s

    return None
Esempio n. 6
0
def pick(keys: Sequence[str], doc: Dict) -> Dict:
    """Picks the provided keys from the dictionary.
  
  Example
    pick(["a", "b"], {"a": 1, "b": 2, "c": 3}) # => {"a": 1, "b": 2}
  """

    if not _.isIterable(keys):
        return None

    if not isinstance(doc, dict):
        return None

    return {k: doc.get(k, None) for k in keys}
Esempio n. 7
0
    def apply(self, arr: List[float], yValueIndex: int = None):
        """
      arr = [x1, x2, x3, ...]
    """

        if self.__data__ is None:
            self.initialize()

        if isinstance(arr, numbers.Number):
            arr = [arr]

        inds = tuple(
            _.map(
                lambda val, ind: self.func[ind]
                (self.__min__[ind], self.__max__[ind], self.__bin_width__[ind],
                 self.__bin_number__[ind] - 1, val), arr, range(len(arr))))

        # Points outside the set limits are ignored.
        if None in inds:
            return self

        agg = self.__data__[inds]

        if agg is None:
            agg = self.__data__[inds] = {
                'cnt': 0,
                'sum': 0,
                'sum2': 0,
                'min': 0,
                'max': 0
            }

        agg['cnt'] += 1

        y_val_ind = yValueIndex or len(arr) - 1
        y_val = arr[y_val_ind]

        agg['sum'] += y_val
        agg['sum2'] += y_val * y_val

        if agg['min'] > y_val:
            agg['min'] = y_val
        if agg['max'] < y_val:
            agg['max'] = y_val

        return self
Esempio n. 8
0
        def __init__(self, dims: List[int], typecode: str = 'd'):
            length = _.reduce(lambda agg, i: agg * i, dims, 1)

            sparseLS = Map().mutate()

            dimsLen = len(dims)

            self.__buffer__ = sparseLS

            self.__dims__ = dims

            if dimsLen == 1:
                self.__calcPos__ = calcPos1

            elif dimsLen == 2:
                self.__calcPos__ = calcPos2

            elif dimsLen == 3:
                self.__calcPos__ = calcPos3
Esempio n. 9
0
    def __init__(self, dims: List[int], typecode: str = 'd', silent=False):
        length = _.reduce(lambda agg, i: agg * i, dims, 1)

        ls = array(typecode, map(lambda i: 0, range(length)))

        dimsLen = len(dims)

        self.__buffer__ = ls
        if silent is False:
            print('\nContainer size in memory: {0} KB'.format(
                len(ls) * ls.itemsize / 1024))

        self.__dims__ = dims

        if dimsLen == 1:
            self.__calcPos__ = calcPos1

        elif dimsLen == 2:
            self.__calcPos__ = calcPos2

        elif dimsLen == 3:
            self.__calcPos__ = calcPos3
Esempio n. 10
0
def fileStream(
    file_name: str,
    bathcSize: int = 700
) -> Generator[List[List[float]], None, List[List[float]]]:
    with open(file_name, newline="\n") as file:
        data = csv.reader(file, delimiter=",")

        headers = next(data)
        # yield headers;

        j = 0
        queue = []
        for i in data:
            if j < bathcSize:
                queue.append(_.map(float, i[1:3]))
                j += 1

            else:
                j = 0
                yield queue
                queue = []

        if len(queue) > 0:
            return queue
Esempio n. 11
0
def writeImg(colorData):
    # plot the count matrix as an image
    f = imshow(colorData)
    axis('off')
    savefig('figure .png', dpi=500, format="png", transparent=True)


stream = streamFromFiles(FILES)
ind = 0

startTime = time.monotonic()

batch = next(stream, None)
while batch:
    shader.applyOnBatches(batch)
    batch = next(stream, None)

CNT_MATRIX = shader.getAgg('cnt')
MAX_CNT = max(max(CNT_MATRIX))

print("Maximun count of Uber rides in NYC: {0}".format(MAX_CNT))

# total count
TOTAL_CNT = sum(_.map(sum, CNT_MATRIX))
print("Total number of Uber rides in NYC: {0}".format(TOTAL_CNT))

writeImg(_.map(lambda i: color_map(i), CNT_MATRIX))

endTime = time.monotonic() - startTime
print(f"   Processing time:\t\t\t{endTime:.4f}s")
Esempio n. 12
0
    if b is not None:
        shader.applyOnBatches(b)
        if ind > 499 and ind % 500 == 0:
            snapshots.append(getShapshot(shader, color_map))
        ind += 1

    else:
        break

CNT_MATRIX = shader.getAgg('cnt')
MAX_CNT = max(max(CNT_MATRIX))

print("Maximun count of Uber rides in NYC: {0}".format(MAX_CNT))

# total count
TOTAL_CNT = sum(_.map(sum, CNT_MATRIX))
print("Total number of Uber rides in NYC: {0}".format(TOTAL_CNT))

for ind, s in enumerate(snapshots):
    if ind < 10:
        index = '0{0}'.format(ind)
    else:
        index = ind

    writeSnapshot(s, index)

endTime = time.monotonic() - startTime
print(f"   Processing time:\t\t\t{endTime:.4f}s")

# see https://eli.thegreenplace.net/2016/drawing-animated-gifs-with-matplotlib/
os.system('convert -delay 60 -loop 0 figure-*.jpg figure.gif')
Esempio n. 13
0
def getValues(doc, keys):
    if not _.isIterable(keys):
        return None
    return _.map(lambda k: get(doc, k), keys)
Esempio n. 14
0
from funkpy import Collection as _
from funkpy.Monads import Functor, Monad, Option
from funkpy.utils import curry, compose

l = [1, 2, 3]
# concatenate n lists
_.concat(l, [4, 5, 6], [7, 8, 9], 10) # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

# append a list
_.push(l, [4, 5, 6]) # => [1, 2, 3, [4, 5, 6]]

addOne = curry(_.strictMap)(lambda i: i+1)
print(addOne([1, 2, 3])) # => [2, 3, 4]

addTwo = compose(addOne, addOne)
print(addTwo([1, 2, 3])) # => [3, 4, 5]



# How to construct this functor thing? 
Functor(5)
# OR
Functor.of(5)

# I love mapping functors
print(Functor.of("Start here").map(lambda i: i+" and keep walking!"))

# and some extra magic for free allows you to compare functors based 
# on the values they hold

print(Functor.of(5) == Functor.of(5)) # => True (fingers crossed) 
Esempio n. 15
0
    def applyOnBatches(self,
                       matrix: List[List[float]],
                       yValueIndex: int = None):
        """
      matrix =
      [
        [x1, x2, x3, ...],
        [x1, x2, x3, ...],
        [x1, x2, x3, ...],
        ...
      ]
    """
        if self.__data__ is None:
            self.initialize()

        if isinstance(matrix[0], numbers.Number):
            print("Argument \"matrix\" can only be List[List[float]]!")
            return self

        zipMatrix = _.zip(*matrix)
        new_matrix = []

        for ind, f in enumerate(self.func):
            min_val = self.__min__[ind]
            max_val = self.__max__[ind]
            bin_width = self.__bin_width__[ind]
            bin_number = self.__bin_number__[ind] - 1

            new_matrix.append(
                _.map(
                    lambda val: f(min_val, max_val, bin_width, bin_number, val
                                  ), zipMatrix[ind]))

        y_val_ind = yValueIndex or len(matrix[0]) - 1
        for item in _.zip(*new_matrix):
            inds = tuple(item)

            # Points outside the set limits are ignored.
            if None in inds:
                break
            agg = self.__data__[inds]

            if agg is None:
                agg = self.__data__[inds] = {
                    'cnt': 0,
                    'sum': 0,
                    'sum2': 0,
                    'min': 0,
                    'max': 0
                }

            agg['cnt'] += 1

            y_val = item[y_val_ind]

            agg['sum'] += y_val
            agg['sum2'] += y_val * y_val

            if agg['min'] > y_val:
                agg['min'] = y_val
            if agg['max'] < y_val:
                agg['max'] = y_val

        return self
Esempio n. 16
0
def getShapshot(shader, color_map):
    # map the count to RGB colors
    # this is necessary for imshow to work
    return _.map(lambda i: color_map(i), shader.getAgg('cnt'))
Esempio n. 17
0
    'xtick.major.width': .3,
    'xtick.minor.width': .3,
    'axes.linewidth': .3,
    'axes.spines.top': False,
    'axes.spines.right': False,

    # stops the renderer from embedding the font
    'svg.fonttype': 'none',
    'font.family': 'sans-serif',
    'font.sans-serif': 'Source Sans Pro'
})

rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = 'Source Sans Pro'

FILES = _.map(os.path.realpath, ['./matrix_data.csv'])


def readFile(file_name: str) -> None:
    with open(file_name, newline="\n") as file:
        data = csv.reader(file, delimiter=",")

        headers = next(data)

        return tree.apply(data, lambda i: [i[3], i[1], i[0]])


PIPE = compose(lambda i: i.sort() or i,
               curry(_.strictMap)(float),
               curry(_.filter)(lambda i: i != "cnt"), list)