def eager_integrate(log_measure, integrand, reduced_vars): real_vars = frozenset(k for k in reduced_vars if log_measure.inputs[k].dtype == 'real') if real_vars: lhs_reals = frozenset(k for k, d in log_measure.inputs.items() if d.dtype == 'real') rhs_reals = frozenset(k for k, d in integrand.inputs.items() if d.dtype == 'real') if lhs_reals == real_vars and rhs_reals <= real_vars: inputs = OrderedDict((k, d) for t in (log_measure, integrand) for k, d in t.inputs.items()) lhs_info_vec, lhs_precision = align_gaussian(inputs, log_measure) rhs_info_vec, rhs_precision = align_gaussian(inputs, integrand) lhs = Gaussian(lhs_info_vec, lhs_precision, inputs) # Compute the expectation of a non-normalized quadratic form. # See "The Matrix Cookbook" (November 15, 2012) ss. 8.2.2 eq. 380. # http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf norm = ops.exp(lhs.log_normalizer.data) lhs_cov = ops.cholesky_inverse(lhs._precision_chol) lhs_loc = ops.cholesky_solve(ops.unsqueeze(lhs.info_vec, -1), lhs._precision_chol).squeeze(-1) vmv_term = _vv(lhs_loc, rhs_info_vec - 0.5 * _mv(rhs_precision, lhs_loc)) data = norm * (vmv_term - 0.5 * _trace_mm(rhs_precision, lhs_cov)) inputs = OrderedDict((k, d) for k, d in inputs.items() if k not in reduced_vars) result = Tensor(data, inputs) return result.reduce(ops.add, reduced_vars - real_vars) raise NotImplementedError('TODO implement partial integration') return None # defer to default implementation
def eager_integrate(log_measure, integrand, reduced_vars): real_vars = frozenset(k for k in reduced_vars if log_measure.inputs[k].dtype == 'real') if real_vars == frozenset([integrand.name]): loc = ops.cholesky_solve(ops.unsqueeze(log_measure.info_vec, -1), log_measure._precision_chol).squeeze(-1) data = loc * ops.unsqueeze(ops.exp(log_measure.log_normalizer.data), -1) data = data.reshape(loc.shape[:-1] + integrand.output.shape) inputs = OrderedDict((k, d) for k, d in log_measure.inputs.items() if d.dtype != 'real') result = Tensor(data, inputs) return result.reduce(ops.add, reduced_vars - real_vars) return None # defer to default implementation
def gaussian_to_data(funsor_dist, name_to_dim=None, normalized=False): if normalized: return to_data(funsor_dist.log_normalizer + funsor_dist, name_to_dim=name_to_dim) loc = ops.cholesky_solve(ops.unsqueeze(funsor_dist.info_vec, -1), ops.cholesky(funsor_dist.precision)).squeeze(-1) int_inputs = OrderedDict( (k, d) for k, d in funsor_dist.inputs.items() if d.dtype != "real") loc = to_data(Tensor(loc, int_inputs), name_to_dim) precision = to_data(Tensor(funsor_dist.precision, int_inputs), name_to_dim) backend_dist = import_module( BACKEND_TO_DISTRIBUTIONS_BACKEND[get_backend()]) return backend_dist.MultivariateNormal.dist_class( loc, precision_matrix=precision)
def moment_matching_contract_joint(red_op, bin_op, reduced_vars, discrete, gaussian): approx_vars = frozenset( k for k in reduced_vars if k in gaussian.inputs and gaussian.inputs[k].dtype != 'real') exact_vars = reduced_vars - approx_vars if exact_vars and approx_vars: return Contraction(red_op, bin_op, exact_vars, discrete, gaussian).reduce(red_op, approx_vars) if approx_vars and not exact_vars: discrete += gaussian.log_normalizer new_discrete = discrete.reduce( ops.logaddexp, approx_vars.intersection(discrete.inputs)) new_discrete = discrete.reduce( ops.logaddexp, approx_vars.intersection(discrete.inputs)) num_elements = reduce(ops.mul, [ gaussian.inputs[k].num_elements for k in approx_vars.difference(discrete.inputs) ], 1) if num_elements != 1: new_discrete -= math.log(num_elements) int_inputs = OrderedDict( (k, d) for k, d in gaussian.inputs.items() if d.dtype != 'real') probs = (discrete - new_discrete.clamp_finite()).exp() old_loc = Tensor( ops.cholesky_solve(ops.unsqueeze(gaussian.info_vec, -1), gaussian._precision_chol).squeeze(-1), int_inputs) new_loc = (probs * old_loc).reduce(ops.add, approx_vars) old_cov = Tensor(ops.cholesky_inverse(gaussian._precision_chol), int_inputs) diff = old_loc - new_loc outers = Tensor( ops.unsqueeze(diff.data, -1) * ops.unsqueeze(diff.data, -2), diff.inputs) new_cov = ((probs * old_cov).reduce(ops.add, approx_vars) + (probs * outers).reduce(ops.add, approx_vars)) # Numerically stabilize by adding bogus precision to empty components. total = probs.reduce(ops.add, approx_vars) mask = ops.unsqueeze(ops.unsqueeze((total.data == 0), -1), -1) new_cov.data = new_cov.data + mask * ops.new_eye( new_cov.data, new_cov.data.shape[-1:]) new_precision = Tensor( ops.cholesky_inverse(ops.cholesky(new_cov.data)), new_cov.inputs) new_info_vec = ( new_precision.data @ ops.unsqueeze(new_loc.data, -1)).squeeze(-1) new_inputs = new_loc.inputs.copy() new_inputs.update( (k, d) for k, d in gaussian.inputs.items() if d.dtype == 'real') new_gaussian = Gaussian(new_info_vec, new_precision.data, new_inputs) new_discrete -= new_gaussian.log_normalizer return new_discrete + new_gaussian return None