Esempio n. 1
0
    def model(data):
        log_prob = funsor.to_funsor(0.)

        trans = dist.Categorical(probs=funsor.Tensor(
            trans_probs,
            inputs=OrderedDict([('prev', funsor.Bint[args.hidden_dim])]),
        ))

        emit = dist.Categorical(probs=funsor.Tensor(
            emit_probs,
            inputs=OrderedDict([('latent', funsor.Bint[args.hidden_dim])]),
        ))

        x_curr = funsor.Number(0, args.hidden_dim)
        for t, y in enumerate(data):
            x_prev = x_curr

            # A delayed sample statement.
            x_curr = funsor.Variable('x_{}'.format(t),
                                     funsor.Bint[args.hidden_dim])
            log_prob += trans(prev=x_prev, value=x_curr)

            if not args.lazy and isinstance(x_prev, funsor.Variable):
                log_prob = log_prob.reduce(ops.logaddexp, x_prev.name)

            log_prob += emit(latent=x_curr, value=funsor.Tensor(y, dtype=2))

        log_prob = log_prob.reduce(ops.logaddexp)
        return log_prob
Esempio n. 2
0
    def model(data):
        log_prob = funsor.Number(0.)

        # s is the discrete latent state,
        # x is the continuous latent state,
        # y is the observed state.
        s_curr = funsor.Tensor(torch.tensor(0), dtype=2)
        x_curr = funsor.Tensor(torch.tensor(0.))
        for t, y in enumerate(data):
            s_prev = s_curr
            x_prev = x_curr

            # A delayed sample statement.
            s_curr = funsor.Variable('s_{}'.format(t), funsor.bint(2))
            log_prob += dist.Categorical(trans_probs[s_prev], value=s_curr)

            # A delayed sample statement.
            x_curr = funsor.Variable('x_{}'.format(t), funsor.reals())
            log_prob += dist.Normal(x_prev, trans_noise[s_curr], value=x_curr)

            # Marginalize out previous delayed sample statements.
            if t > 0:
                log_prob = log_prob.reduce(ops.logaddexp,
                                           {s_prev.name, x_prev.name})

            # An observe statement.
            log_prob += dist.Normal(x_curr, emit_noise, value=y)

        log_prob = log_prob.reduce(ops.logaddexp)
        return log_prob
Esempio n. 3
0
    def log_prob(self, data):
        trans_logits, trans_probs, trans_mvn, obs_mvn, x_trans_dist, y_dist = self.get_tensors_and_dists(
        )

        log_prob = funsor.Number(0.)

        s_vars = {
            -1: funsor.Tensor(torch.tensor(0), dtype=self.num_components)
        }
        x_vars = {}

        for t, y in enumerate(data):
            # construct free variables for s_t and x_t
            s_vars[t] = funsor.Variable(f's_{t}',
                                        funsor.bint(self.num_components))
            x_vars[t] = funsor.Variable(f'x_{t}',
                                        funsor.reals(self.hidden_dim))

            # incorporate the discrete switching dynamics
            log_prob += dist.Categorical(trans_probs(s=s_vars[t - 1]),
                                         value=s_vars[t])

            # incorporate the prior term p(x_t | x_{t-1})
            if t == 0:
                log_prob += self.x_init_mvn(value=x_vars[t])
            else:
                log_prob += x_trans_dist(s=s_vars[t],
                                         x=x_vars[t - 1],
                                         y=x_vars[t])

            # do a moment-matching reduction. at this point log_prob depends on (moment_matching_lag + 1)-many
            # pairs of free variables.
            if t > self.moment_matching_lag - 1:
                log_prob = log_prob.reduce(
                    ops.logaddexp,
                    frozenset([
                        s_vars[t - self.moment_matching_lag].name,
                        x_vars[t - self.moment_matching_lag].name
                    ]))

            # incorporate the observation p(y_t | x_t, s_t)
            log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)

        T = data.shape[0]
        # reduce any remaining free variables
        for t in range(self.moment_matching_lag):
            log_prob = log_prob.reduce(
                ops.logaddexp,
                frozenset([
                    s_vars[T - self.moment_matching_lag + t].name,
                    x_vars[T - self.moment_matching_lag + t].name
                ]))

        # assert that we've reduced all the free variables in log_prob
        assert not log_prob.inputs, 'unexpected free variables remain'

        # return the PyTorch tensor behind log_prob (which we can directly differentiate)
        return log_prob.data
Esempio n. 4
0
def test_bart(analytic_kl):
    global call_count
    call_count = 0

    with interpretation(reflect):
        q = Independent(
            Independent(
                Contraction(
                    ops.nullop,
                    ops.add,
                    frozenset(),
                    (
                        Tensor(
                            torch.tensor(
                                [[
                                    -0.6077086925506592, -1.1546266078948975,
                                    -0.7021151781082153, -0.5303535461425781,
                                    -0.6365622282028198, -1.2423288822174072,
                                    -0.9941254258155823, -0.6287292242050171
                                ],
                                 [
                                     -0.6987162828445435, -1.0875964164733887,
                                     -0.7337473630905151, -0.4713417589664459,
                                     -0.6674002408981323, -1.2478348016738892,
                                     -0.8939017057418823, -0.5238542556762695
                                 ]],
                                dtype=torch.float32),  # noqa
                            (
                                (
                                    'time_b4',
                                    bint(2),
                                ),
                                (
                                    '_event_1_b2',
                                    bint(8),
                                ),
                            ),
                            'real'),
                        Gaussian(
                            torch.tensor([
                                [[-0.3536059558391571], [-0.21779225766658783],
                                 [0.2840439975261688], [0.4531521499156952],
                                 [-0.1220812276005745], [-0.05519985035061836],
                                 [0.10932210087776184], [0.6656699776649475]],
                                [[-0.39107921719551086], [
                                    -0.20241987705230713
                                ], [0.2170514464378357], [0.4500560462474823],
                                 [0.27945515513420105], [-0.0490039587020874],
                                 [-0.06399798393249512], [0.846565842628479]]
                            ],
                                         dtype=torch.float32),  # noqa
                            torch.tensor([
                                [[[1.984686255455017]], [[0.6699360013008118]],
                                 [[1.6215802431106567]], [[2.372016668319702]],
                                 [[1.77385413646698]], [[0.526767373085022]],
                                 [[0.8722561597824097]], [[2.1879124641418457]]
                                 ],
                                [[[1.6996612548828125]], [[
                                    0.7535632252693176
                                ]], [[1.4946647882461548]],
                                 [[2.642792224884033]], [[1.7301604747772217]],
                                 [[0.5203893780708313]], [[1.055436372756958]],
                                 [[2.8370864391326904]]]
                            ],
                                         dtype=torch.float32),  # noqa
                            (
                                (
                                    'time_b4',
                                    bint(2),
                                ),
                                (
                                    '_event_1_b2',
                                    bint(8),
                                ),
                                (
                                    'value_b1',
                                    reals(),
                                ),
                            )),
                    )),
                'gate_rate_b3',
                '_event_1_b2',
                'value_b1'),
            'gate_rate_t',
            'time_b4',
            'gate_rate_b3')
        p_prior = Contraction(
            ops.logaddexp,
            ops.add,
            frozenset({'state(time=1)_b11', 'state_b10'}),
            (
                MarkovProduct(
                    ops.logaddexp,
                    ops.add,
                    Contraction(
                        ops.nullop,
                        ops.add,
                        frozenset(),
                        (
                            Tensor(
                                torch.tensor(2.7672932147979736,
                                             dtype=torch.float32), (), 'real'),
                            Gaussian(
                                torch.tensor([-0.0, -0.0, 0.0, 0.0],
                                             dtype=torch.float32),
                                torch.tensor([[
                                    98.01002502441406, 0.0, -99.0000228881836,
                                    -0.0
                                ],
                                              [
                                                  0.0, 98.01002502441406, -0.0,
                                                  -99.0000228881836
                                              ],
                                              [
                                                  -99.0000228881836, -0.0,
                                                  100.0000228881836, 0.0
                                              ],
                                              [
                                                  -0.0, -99.0000228881836, 0.0,
                                                  100.0000228881836
                                              ]],
                                             dtype=torch.float32),  # noqa
                                (
                                    (
                                        'state_b7',
                                        reals(2, ),
                                    ),
                                    (
                                        'state(time=1)_b8',
                                        reals(2, ),
                                    ),
                                )),
                            Subs(
                                AffineNormal(
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                0.03488487750291824,
                                                0.07356668263673782,
                                                0.19946961104869843,
                                                0.5386509299278259,
                                                -0.708323061466217,
                                                0.24411526322364807,
                                                -0.20855577290058136,
                                                -0.2421337217092514
                                            ],
                                             [
                                                 0.41762110590934753,
                                                 0.5272183418273926,
                                                 -0.49835553765296936,
                                                 -0.0363837406039238,
                                                 -0.0005282597267068923,
                                                 0.2704298794269562,
                                                 -0.155222088098526,
                                                 -0.44802337884902954
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        (),
                                        'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                -0.003566693514585495,
                                                -0.2848514914512634,
                                                0.037103548645973206,
                                                0.12648648023605347,
                                                -0.18501518666744232,
                                                -0.20899859070777893,
                                                0.04121830314397812,
                                                0.0054807960987091064
                                            ],
                                             [
                                                 0.0021788496524095535,
                                                 -0.18700894713401794,
                                                 0.08187370002269745,
                                                 0.13554862141609192,
                                                 -0.10477752983570099,
                                                 -0.20848378539085388,
                                                 -0.01393645629286766,
                                                 0.011670656502246857
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        ((
                                            'time_b9',
                                            bint(2),
                                        ), ),
                                        'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[
                                                0.5974780917167664,
                                                0.864071786403656,
                                                1.0236268043518066,
                                                0.7147538065910339,
                                                0.7423890233039856,
                                                0.9462157487869263,
                                                1.2132389545440674,
                                                1.0596832036972046
                                            ],
                                             [
                                                 0.5787821412086487,
                                                 0.9178534150123596,
                                                 0.9074794054031372,
                                                 0.6600189208984375,
                                                 0.8473222255706787,
                                                 0.8426999449729919,
                                                 1.194266438484192,
                                                 1.0471148490905762
                                             ]],
                                            dtype=torch.float32),  # noqa
                                        ((
                                            'time_b9',
                                            bint(2),
                                        ), ),
                                        'real'),
                                    Variable('state(time=1)_b8', reals(2, )),
                                    Variable('gate_rate_b6', reals(8, ))),
                                ((
                                    'gate_rate_b6',
                                    Binary(
                                        ops.GetitemOp(0),
                                        Variable('gate_rate_t', reals(2, 8)),
                                        Variable('time_b9', bint(2))),
                                ), )),
                        )),
                    Variable('time_b9', bint(2)),
                    frozenset({('state_b7', 'state(time=1)_b8')}),
                    frozenset({('state(time=1)_b8', 'state(time=1)_b11'),
                               ('state_b7', 'state_b10')})),  # noqa
                Subs(
                    dist.MultivariateNormal(
                        Tensor(torch.tensor([0.0, 0.0], dtype=torch.float32),
                               (), 'real'),
                        Tensor(
                            torch.tensor([[10.0, 0.0], [0.0, 10.0]],
                                         dtype=torch.float32),
                            (), 'real'), Variable('value_b5', reals(2, ))), ((
                                'value_b5',
                                Variable('state_b10', reals(2, )),
                            ), )),
            ))
        p_likelihood = Contraction(
            ops.add,
            ops.nullop,
            frozenset({'time_b17', 'destin_b16', 'origin_b15'}),
            (
                Contraction(
                    ops.logaddexp,
                    ops.add,
                    frozenset({'gated_b14'}),
                    (
                        dist.Categorical(
                            Binary(
                                ops.GetitemOp(0),
                                Binary(
                                    ops.GetitemOp(0),
                                    Subs(
                                        Function(
                                            unpack_gate_rate_0, reals(2, 2, 2),
                                            (Variable('gate_rate_b12',
                                                      reals(8, )), )),
                                        ((
                                            'gate_rate_b12',
                                            Binary(
                                                ops.GetitemOp(0),
                                                Variable(
                                                    'gate_rate_t', reals(2,
                                                                         8)),
                                                Variable('time_b17', bint(2))),
                                        ), )), Variable('origin_b15',
                                                        bint(2))),
                                Variable('destin_b16', bint(2))),
                            Variable('gated_b14', bint(2))),
                        Stack(
                            'gated_b14',
                            (
                                dist.Poisson(
                                    Binary(
                                        ops.GetitemOp(0),
                                        Binary(
                                            ops.GetitemOp(0),
                                            Subs(
                                                Function(
                                                    unpack_gate_rate_1,
                                                    reals(2, 2), (Variable(
                                                        'gate_rate_b13',
                                                        reals(8, )), )),
                                                ((
                                                    'gate_rate_b13',
                                                    Binary(
                                                        ops.GetitemOp(0),
                                                        Variable(
                                                            'gate_rate_t',
                                                            reals(2, 8)),
                                                        Variable(
                                                            'time_b17',
                                                            bint(2))),
                                                ), )),
                                            Variable('origin_b15', bint(2))),
                                        Variable('destin_b16', bint(2))),
                                    Tensor(
                                        torch.tensor(
                                            [[[1.0, 1.0], [5.0, 0.0]],
                                             [[0.0, 6.0], [19.0, 3.0]]],
                                            dtype=torch.float32),  # noqa
                                        (
                                            (
                                                'time_b17',
                                                bint(2),
                                            ),
                                            (
                                                'origin_b15',
                                                bint(2),
                                            ),
                                            (
                                                'destin_b16',
                                                bint(2),
                                            ),
                                        ),
                                        'real')),
                                dist.Delta(
                                    Tensor(
                                        torch.tensor(0.0, dtype=torch.float32),
                                        (), 'real'),
                                    Tensor(
                                        torch.tensor(0.0, dtype=torch.float32),
                                        (), 'real'),
                                    Tensor(
                                        torch.tensor(
                                            [[[1.0, 1.0], [5.0, 0.0]],
                                             [[0.0, 6.0], [19.0, 3.0]]],
                                            dtype=torch.float32),  # noqa
                                        (
                                            (
                                                'time_b17',
                                                bint(2),
                                            ),
                                            (
                                                'origin_b15',
                                                bint(2),
                                            ),
                                            (
                                                'destin_b16',
                                                bint(2),
                                            ),
                                        ),
                                        'real')),
                            )),
                    )), ))

    if analytic_kl:
        exact_part = funsor.Integrate(q, p_prior - q, "gate_rate_t")
        with interpretation(monte_carlo):
            approx_part = funsor.Integrate(q, p_likelihood, "gate_rate_t")
        elbo = exact_part + approx_part
    else:
        p = p_prior + p_likelihood
        with interpretation(monte_carlo):
            elbo = Integrate(q, p - q, "gate_rate_t")

    assert isinstance(elbo, Tensor), elbo.pretty()
    assert call_count == 1
Esempio n. 5
0
    def filter_and_predict(self, data, smoothing=False):
        trans_logits, trans_probs, trans_mvn, obs_mvn, x_trans_dist, y_dist = self.get_tensors_and_dists(
        )

        log_prob = funsor.Number(0.)

        s_vars = {
            -1: funsor.Tensor(torch.tensor(0), dtype=self.num_components)
        }
        x_vars = {-1: None}

        predictive_x_dists, predictive_y_dists, filtering_dists = [], [], []
        test_LLs = []

        for t, y in enumerate(data):
            s_vars[t] = funsor.Variable(f's_{t}',
                                        funsor.bint(self.num_components))
            x_vars[t] = funsor.Variable(f'x_{t}',
                                        funsor.reals(self.hidden_dim))

            log_prob += dist.Categorical(trans_probs(s=s_vars[t - 1]),
                                         value=s_vars[t])

            if t == 0:
                log_prob += self.x_init_mvn(value=x_vars[t])
            else:
                log_prob += x_trans_dist(s=s_vars[t],
                                         x=x_vars[t - 1],
                                         y=x_vars[t])

            if t > 0:
                log_prob = log_prob.reduce(
                    ops.logaddexp,
                    frozenset([s_vars[t - 1].name, x_vars[t - 1].name]))

            # do 1-step prediction and compute test LL
            if t > 0:
                predictive_x_dists.append(log_prob)
                _log_prob = log_prob - log_prob.reduce(ops.logaddexp)
                predictive_y_dist = y_dist(s=s_vars[t],
                                           x=x_vars[t]) + _log_prob
                test_LLs.append(
                    predictive_y_dist(y=y).reduce(ops.logaddexp).data.item())
                predictive_y_dist = predictive_y_dist.reduce(
                    ops.logaddexp, frozenset([f"x_{t}", f"s_{t}"]))
                predictive_y_dists.append(
                    funsor_to_mvn(predictive_y_dist, 0, ()))

            log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)

            # save filtering dists for forward-backward smoothing
            if smoothing:
                filtering_dists.append(log_prob)

        # do the backward recursion using previously computed ingredients
        if smoothing:
            # seed the backward recursion with the filtering distribution at t=T
            smoothing_dists = [filtering_dists[-1]]
            T = data.size(0)

            s_vars = {
                t: funsor.Variable(f's_{t}', funsor.bint(self.num_components))
                for t in range(T)
            }
            x_vars = {
                t: funsor.Variable(f'x_{t}', funsor.reals(self.hidden_dim))
                for t in range(T)
            }

            # do the backward recursion.
            # let p[t|t-1] be the predictive distribution at time step t.
            # let p[t|t] be the filtering distribution at time step t.
            # let f[t] denote the prior (transition) density at time step t.
            # then the smoothing distribution p[t|T] at time step t is
            # given by the following recursion.
            # p[t-1|T] = p[t-1|t-1] <p[t|T] f[t] / p[t|t-1]>
            # where <...> denotes integration of the latent variables at time step t.
            for t in reversed(range(T - 1)):
                integral = smoothing_dists[-1] - predictive_x_dists[t]
                integral += dist.Categorical(trans_probs(s=s_vars[t]),
                                             value=s_vars[t + 1])
                integral += x_trans_dist(s=s_vars[t],
                                         x=x_vars[t],
                                         y=x_vars[t + 1])
                integral = integral.reduce(
                    ops.logaddexp,
                    frozenset([s_vars[t + 1].name, x_vars[t + 1].name]))
                smoothing_dists.append(filtering_dists[t] + integral)

        # compute predictive test MSE and predictive variances
        predictive_means = torch.stack([d.mean for d in predictive_y_dists
                                        ])  # T-1 ydim
        predictive_vars = torch.stack([
            d.covariance_matrix.diagonal(dim1=-1, dim2=-2)
            for d in predictive_y_dists
        ])
        predictive_mse = (predictive_means - data[1:, :]).pow(2.0).mean(-1)

        if smoothing:
            # compute smoothed mean function
            smoothing_dists = [
                funsor_to_cat_and_mvn(d, 0, (f"s_{t}", ))
                for t, d in enumerate(reversed(smoothing_dists))
            ]
            means = torch.stack([d[1].mean
                                 for d in smoothing_dists])  # T 2 xdim
            means = torch.matmul(means.unsqueeze(-2),
                                 self.observation_matrix).squeeze(
                                     -2)  # T 2 ydim

            probs = torch.stack([d[0].logits for d in smoothing_dists]).exp()
            probs = probs / probs.sum(-1, keepdim=True)  # T 2

            smoothing_means = (probs.unsqueeze(-1) * means).sum(-2)  # T ydim
            smoothing_probs = probs[:, 1]

            return predictive_mse, torch.tensor(np.array(test_LLs)), predictive_means, predictive_vars, \
                smoothing_means, smoothing_probs
        else:
            return predictive_mse, torch.tensor(np.array(test_LLs))
Esempio n. 6
0
    def __call__(self):

        # calls pyro.param so that params are exposed and constraints applied
        # should not create any new torch.Tensors after __init__
        self.initialize_params()

        N_state = self.config["sizes"]["state"]

        # initialize gamma to uniform
        gamma = Tensor(
            torch.zeros((N_state, N_state)),
            OrderedDict([("y_prev", bint(N_state))]),
        )

        N_v = self.config["sizes"]["random"]
        N_c = self.config["sizes"]["group"]
        log_prob = []

        plate_g = Tensor(torch.zeros(N_c), OrderedDict([("g", bint(N_c))]))

        # group-level random effects
        if self.config["group"]["random"] == "discrete":
            # group-level discrete effect
            e_g = Variable("e_g", bint(N_v))
            e_g_dist = plate_g + dist.Categorical(**self.params["e_g"])(value=e_g)

            log_prob.append(e_g_dist)

            eps_g = (plate_g + self.params["eps_g"]["theta"])(e_g=e_g)

        elif self.config["group"]["random"] == "continuous":
            eps_g = Variable("eps_g", reals(N_state))
            eps_g_dist = plate_g + dist.Normal(**self.params["eps_g"])(value=eps_g)

            log_prob.append(eps_g_dist)
        else:
            eps_g = to_funsor(0.)

        N_s = self.config["sizes"]["individual"]

        plate_i = Tensor(torch.zeros(N_s), OrderedDict([("i", bint(N_s))]))
        # individual-level random effects
        if self.config["individual"]["random"] == "discrete":
            # individual-level discrete effect
            e_i = Variable("e_i", bint(N_v))
            e_i_dist = plate_g + plate_i + dist.Categorical(
                **self.params["e_i"]
            )(value=e_i) * self.raggedness_masks["individual"](t=0)

            log_prob.append(e_i_dist)

            eps_i = (plate_i + plate_g + self.params["eps_i"]["theta"](e_i=e_i))

        elif self.config["individual"]["random"] == "continuous":
            eps_i = Variable("eps_i", reals(N_state))
            eps_i_dist = plate_g + plate_i + dist.Normal(**self.params["eps_i"])(value=eps_i)

            log_prob.append(eps_i_dist)
        else:
            eps_i = to_funsor(0.)

        # add group-level and individual-level random effects to gamma
        gamma = gamma + eps_g + eps_i

        N_state = self.config["sizes"]["state"]

        # we've accounted for all effects, now actually compute gamma_y
        gamma_y = gamma(y_prev="y(t=1)")

        y = Variable("y", bint(N_state))
        y_dist = plate_g + plate_i + dist.Categorical(
            probs=gamma_y.exp() / gamma_y.exp().sum()
        )(value=y)

        # observation 1: step size
        step_dist = plate_g + plate_i + dist.Gamma(
            **{k: v(y_curr=y) for k, v in self.params["step"].items()}
        )(value=self.observations["step"])

        # step size zero-inflation
        if self.config["zeroinflation"]:
            step_zi = dist.Categorical(probs=self.params["zi_step"]["zi_param"](y_curr=y))(
                value="zi_step")
            step_zi_dist = plate_g + plate_i + dist.Delta(self.config["MISSING"], 0.)(
                value=self.observations["step"])
            step_dist = (step_zi + Stack("zi_step", (step_dist, step_zi_dist))).reduce(ops.logaddexp, "zi_step")

        # observation 2: step angle
        angle_dist = plate_g + plate_i + dist.VonMises(
            **{k: v(y_curr=y) for k, v in self.params["angle"].items()}
        )(value=self.observations["angle"])

        # observation 3: dive activity
        omega_dist = plate_g + plate_i + dist.Beta(
            **{k: v(y_curr=y) for k, v in self.params["omega"].items()}
        )(value=self.observations["omega"])

        # dive activity zero-inflation
        if self.config["zeroinflation"]:
            omega_zi = dist.Categorical(probs=self.params["zi_omega"]["zi_param"](y_curr=y))(
                value="zi_omega")
            omega_zi_dist = plate_g + plate_i + dist.Delta(self.config["MISSING"], 0.)(
                value=self.observations["omega"])
            omega_dist = (omega_zi + Stack("zi_omega", (omega_dist, omega_zi_dist))).reduce(ops.logaddexp, "zi_omega")

        # finally, construct the term for parallel scan reduction
        hmm_factor = step_dist + angle_dist + omega_dist
        hmm_factor = hmm_factor * self.raggedness_masks["individual"]
        hmm_factor = hmm_factor * self.raggedness_masks["timestep"]
        # copy masking behavior of pyro.infer.TraceEnum_ELBO._compute_model_factors
        hmm_factor = hmm_factor + y_dist
        log_prob.insert(0, hmm_factor)

        return log_prob