Esempio n. 1
0
 def calculate_model_zeta(self,
                          station,
                          start_time,
                          end_time,
                          figure=True,
                          *args,
                          **kwargs):
     wind_zeta_data = ReadData(self.wind_path,
                               types='fvcom',
                               variables=['time', 'zeta'])
     tide_zeta_data = ReadData(self.tide_path,
                               types='fvcom',
                               variables=['time', 'zeta'])
     index = wind_zeta_data.find_nearest_point('zeta', station)
     time_range = pd.date_range(start_time, end_time, freq='H')
     time_stamp = date2num(time_range)
     start_index = np.where(wind_zeta_data.data.time[:] == time_stamp[0])
     end_index = np.where(wind_zeta_data.data.time[:] == time_stamp[-1])
     zeta_wind = wind_zeta_data.data.zeta[start_index[0][0]: end_index[0][0]+1, index] - \
                 tide_zeta_data.data.zeta[start_index[0][0]:end_index[0][0]+1, index]
     if figure:
         zeta_fig = PlotFigure(cartesian=True)
         zeta_fig.plot_lines(time_stamp,
                             zeta_wind,
                             time_series=True,
                             *args,
                             **kwargs)
     return zeta_wind
ncep_slp_data = ReadData(select_ncep_slp_path,
                         types='ncep',
                         variables=['time', 'slp'],
                         extents=[105, 135, 5, 45])
ncep_data = PassiveStore()
setattr(ncep_data, 'lon', ncep_wind_data.data.lon)
setattr(ncep_data, 'lat', ncep_wind_data.data.lat)
setattr(ncep_data, 'time', ncep_wind_data.data.time)
setattr(ncep_data, 'u10', ncep_wind_data.data.u10)
setattr(ncep_data, 'v10', ncep_wind_data.data.v10)
setattr(ncep_data, 'slp', ncep_slp_data.data.slp)
ptime = pltdate.num2date(ncep_data.time, tz=None)
ncep_wind_speed = np.sqrt(ncep_data.u10**2 + ncep_data.v10**2)
# # 插值前ncep画图
X, Y = np.meshgrid(ncep_data.lon, ncep_data.lat)
ncep_plot = PlotFigure(extents=[105, 135, 5, 45], title='ncep')
ncep_plot.plot_surface(X, Y, ncep_wind_speed[0, :, :])
ncep_plot.show()

# 网格数据路径
grid_path = r'H:\fvcom\fvcom_input_file\sms.2dm'
# 表面强迫的插值
prep = FvcomPrep(grid_path)
interped_data = prep.interp_surface_forcing(ncep_data)
wind_speed = np.sqrt(interped_data.uwnd**2 + interped_data.vwnd**2)
# 插值后ncep画图
fig_obj = PlotFigure(grid_path=grid_path,
                     figsize=(12, 8),
                     extents=[105, 135, 5, 45])
fig_obj.plot_surface(fig_obj.grid.lon, fig_obj.grid.lat, wind_speed[0, :])
fig_obj.show()
select_start_indx = np.where(
    gauge_data.data.time == select_time_stamp[0])[0][0]
select_end_indx = np.where(gauge_data.data.time == select_time_stamp[-1])[0][0]
select_gauge_zeta = gauge_zeta[select_start_indx:select_end_indx +
                               1] - gauge_mean_zeta
# 选择时间范围的模式数据(减去平均)
select_start_mindx = \
    np.where(model_tide_data.data.time == select_time_stamp[0])[0][0]
select_end_mindx = \
    np.where(model_tide_data.data.time == select_time_stamp[-1])[0][0]
select_model_zeta = specific_mzeta[select_start_mindx:select_end_mindx + 1]

# %% 画图
plot_obj = PlotFigure(cartesian=True,
                      y_label='Sea Level Anomalies(m)',
                      legend_label=('Tide-Gauge', 'Model'),
                      grid=True,
                      time_interval=2)
plot1 = plot_obj.plot_lines(select_time_stamp,
                            select_gauge_zeta,
                            time_series=True,
                            color='b')
plot2 = plot_obj.plot_lines(select_time_stamp,
                            select_model_zeta,
                            linestyle='--',
                            color='r')
plot_obj.set_legend(plot1, plot2)
output = r'D:\2018_2019_research\china_sea_1993\images\final\before\kanmen_gmzeta.svg'
plot_obj.save(output)
# plot_obj.show()
Esempio n. 4
0
from fvcom_tools_packages.read_data import ReadData
from fvcom_tools_packages.fvcom_plot import PlotFigure
import numpy as np
# 准备数据
ncep_path = r'H:\ncep\uv\splanl.gdas.19930801-19930805.grb2.nc'
ecmwf_path = r'E:\ecmwf\wind\1993\interim_uv1993_08.nc'
extents = [105, 135, 5, 40]
ncep_data = ReadData(ncep_path,
                     types='ncep',
                     variables=['lon', 'lat', 'time', 'wind'],
                     extents=extents)
ncep_wind_speed = np.sqrt(ncep_data.data.u10[:]**2 + ncep_data.data.v10[:]**2)
ecmwf_data = ReadData(ecmwf_path,
                      types='ecmwf',
                      variables=['lon', 'lat', 'time', 'wind'],
                      extents=extents)
ecmwf_wind_speed = np.sqrt(ecmwf_data.data.u10[:]**2 +
                           ecmwf_data.data.v10[:]**2)
time_index = 0
# ncep画图
X, Y = np.meshgrid(ncep_data.data.lon, ncep_data.data.lat)
ncep_plot = PlotFigure(extents=extents, title='ncep')
ncep_plot.plot_surface(X, Y, ncep_wind_speed[0, :, :])
ncep_plot.show()
# ecmwf画图
X, Y = np.meshgrid(ecmwf_data.data.lon, ecmwf_data.data.lat)
ncep_plot = PlotFigure(extents=extents, title='ecmwf')
ncep_plot.plot_surface(X, Y, ecmwf_wind_speed[0, :, :])
ncep_plot.show()
wind_spd = site_wind_data['wind_spd'].to_numpy()
wind_dir = site_wind_data['wind_dir'].to_numpy()
# 数据中的角度和quiver的角度不一样,需要加180度
wind_dir = wind_dir + 180
# 选择数据
start_time = date2num(datetime(1993, 9, 28, 2))
end_time = date2num(datetime(1993, 10, 12, 14))
start_index = np.where(start_time == time_stamp)[0][0]
end_index = np.where(end_time == time_stamp)[0][0]
select_wind_spd = wind_spd[start_index:end_index + 1]
select_wind_dir = wind_dir[start_index:end_index + 1]
select_wind_time = time_stamp[start_index:end_index + 1]

# # 画风向时间序列图
# plot_obj = PlotFigure(figsize=(12, 6),cartesian=True, title='Da Chen')
# plot_obj.plot_windDir_time(select_wind_time, select_wind_spd, select_wind_dir)
# output_name = r'D:\2018_2019_research\china_sea_1993\images\papar_images\site_station\{}.pdf'.format(station)
# # plot_obj.save(output_name)
# plot_obj.show()

# 画风速时间序列图
spd_plot = PlotFigure(cartesian=True,
                      title='Yu Huan',
                      grid=True,
                      y_label='Wind Speed(m/s)')
spd_plot.plot_lines(select_wind_time, select_wind_spd, time_series=True)
output_name = r'D:\2018_2019_research\china_sea_1993\images\papar_images\site_station\{}_spd.pdf'.format(
    station)
spd_plot.save(output_name)
# spd_plot.show()
Esempio n. 6
0
from fvcom_tools_packages.read_data import ReadData
import numpy as np
from matplotlib.dates import num2date
"""
    功能:绘制研究区域(包含台风路径、高度计路径以及验潮站)
"""

# %% 数据准备
altimeter_path = r'E:\altimeter_data\ctoh.sla.ref.TP.chinasea.088.nc'
typhoon_path = r'E:\best_track\bwp1993\bwp261993.txt'
alti_data = ReadData(altimeter_path, types='alti', alti_cycle=39)
tp_data = ReadData(typhoon_path, types='bwp')

# %% 画图
plot_obj = PlotFigure(figsize=(10, 8),
                      extents=[115, 138, 15, 35],
                      depth=True,
                      tick_inc=[4, 4])
# 高度计轨迹
plot_obj.plot_lines(alti_data.data.alti_lon,
                    alti_data.data.alti_lat,
                    color='r',
                    lw=4)
# 台风轨迹
plot_obj.plot_lines(tp_data.data.tp_lon,
                    tp_data.data.tp_lat,
                    color='k',
                    marker='o',
                    mfc='r',
                    mec='b',
                    lw=4,
                    ms=10)
Esempio n. 7
0
start_time_stamp = date2num(start_time)
end_time = datetime(1993, 10, 12, 14)
end_time_stamp = date2num(end_time)
start_time_indx = np.where(site_time == start_time_stamp)[0][0]
end_time_indx = np.where(site_time == end_time_stamp)[0][0]
select_site_time = site_time[start_time_indx:end_time_indx + 1]
select_site_wind_spd = site_data.data.wind_spd[start_time_indx:end_time_indx +
                                               1]
select_site_wind_dir = site_data.data.wind_dir[start_time_indx:end_time_indx +
                                               1]
select_model_uwind = model_uwinded[start_time_indx:end_time_indx + 1]
select_model_vwind = model_vwinded[start_time_indx:end_time_indx + 1]
select_model_wind = model_winded[start_time_indx:end_time_indx + 1]

# 只比较风速大小
spd_plot = PlotFigure(title='Sheng Si',
                      cartesian=True,
                      grid=True,
                      y_label='Wind Speed(m/s)',
                      legend_label=('site', 'model'),
                      time_interval=2)
plot1 = spd_plot.scatter(select_site_time, select_site_wind_spd, c='r')
plot2 = spd_plot.plot_lines(select_site_time,
                            select_model_wind,
                            time_series=True)
spd_plot.set_legend(plot1, plot2)
output_name = r'D:\2018_2019_research\china_sea_1993\images\final\before\{}_MSwind_ncep.svg'.format(
    site_data.data.station)
spd_plot.save(output_name)
spd_plot.show()
prep_obj = FvcomPrep(grid_path)
interped_zeta = prep_obj.interp_temp_spatial(model_wind_data.lon,
                                             model_wind_data.lat,
                                             model_wind_data.data.time,
                                             model_zeta,
                                             interp_alti_lon,
                                             interp_alti_lat,
                                             interp_alti_time,
                                             time_single=True,
                                             regular=False)
# 计算出模式中对于高度计点的三个月平均值,并计算最后的模式zeta
position_indx = np.ones(len(interp_alti_lat))
i = 0
for ilon, ilat in zip(interp_alti_lon, interp_alti_lat):
    position = (ilon, ilat)
    indx_tmp = prep_obj.find_nearest_point('zeta', position)
    position_indx[i] = indx_tmp.astype(int)
    i += 1
select_zeta = np.asarray([model_zeta[:, x.astype(int)] for x in position_indx])
mean_zeta = np.mean(select_zeta, axis=1)
model_final_zeta = interped_zeta - np.mean(model_zeta)

# %% 画图
plot_obj = PlotFigure(cartesian=True,
                      x_label='Latitude(deg N)',
                      y_label='Sea Surface Height Anomalies (m)',
                      legend_label=('CTOH', 'Model'))
plot_obj.plot_lines(interp_alti_lat, model_final_zeta)
plot_obj.plot_lines(select_alti_lat, select_alti_sla_39)
plot_obj.show()
Esempio n. 9
0
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
# __NAME__   = plot_sms_grid.py
# __AUTHOR__ = 'QIU ZHOU'
# __TIME__   = 2019/7/16 10:01
"""
    功能:画sms网格图
"""
from fvcom_tools_packages.fvcom_plot import PlotFigure

#%% 数据准备
sms_path = r'E:\fvcom\fvcom_input_file\sms.2dm'

#%% 画图
plot_obj = PlotFigure(grid_path=sms_path,
                      extents=[105, 135, 6, 40],
                      tick_inc=[5, 5])
plot_obj.plot_sms_grid(lw=0.1)
output = r'D:\2018_2019_research\china_sea_1993\images\final\before\grid.svg'
plot_obj.save(output, dpi=300)
plot_obj.show()
Esempio n. 10
0
start_time = date2num(datetime(1993, 9, 28, 2))
end_time = date2num(datetime(1993, 10, 12, 14))
start_index = np.where(start_time == time_stamp)[0][0]
end_index = np.where(end_time == time_stamp)[0][0]
select_temp = temp[start_index:end_index + 1]
select_max_temp = max_temp[start_index:end_index + 1]
select_min_temp = min_temp[start_index:end_index + 1]
select_time = time_stamp[start_index:end_index + 1]
select_press = press[start_index:end_index + 1]
select_max_press = max_press[start_index:end_index + 1]
select_min_press = min_press[start_index:end_index + 1]

# Temp-Press画图
TP_plot = PlotFigure(cartesian=True,
                     title='Yu Huan',
                     y_label='Temperature(℃)',
                     grid=True,
                     legend_label=('Temperture', 'Pressure'))
TP_plot.plot_lines(select_time,
                   select_temp,
                   time_series=True,
                   double_yaxis=True,
                   double_y=select_press,
                   double_ylabel='Air Pressure(hPa)')
output_name = r'D:\2018_2019_research\china_sea_1993\images\papar_images\site_station\{}_TP.pdf'.format(
    station)
# TP_plot.save(output_name)
TP_plot.show()

# Max_temp画图
MT_plot = PlotFigure(cartesian=True,
                            freq='H')
select_time_stamp = date2num(select_time)
select_start_indx = np.where(gauge_data.data.time == select_time_stamp[0])[0][0]
select_end_indx = np.where(gauge_data.data.time == select_time_stamp[-1])[0][0]
select_gauge_zeta = gauge_zeta[select_start_indx:select_end_indx + 1]
# %% 验潮站相对于高度计过境时间时的增水和前期最大增水)
alti_pass_time = datetime(1993, 10, 8, 8, 32)
alti_pass_date = alti_pass_time.strftime('%m-%dT%H:%M')
alti_pass_stime = date2num(alti_pass_time)
zeta_func = interp1d(select_time_stamp, select_gauge_zeta)
gauge_zeta_alti = zeta_func(alti_pass_stime)
point_first = 46 # 62手动选出厦门的第一个峰值的点,坎门的是46
# %% 画图
plot_obj = PlotFigure(cartesian=True, grid=True,
                      y_label='Sea Level Anomalies(m)',
                      time_interval=2,
                      extents=[select_time_stamp[0],select_time_stamp[-1],
                               -0.2, 0.8])
plot_obj.plot_lines(select_time_stamp, select_gauge_zeta,
                    time_series=True, color='b')
plot_obj.vline(alti_pass_stime)
plot_obj.vline(select_time_stamp[point_first])
plot_obj.annotate(alti_pass_date, xy=(alti_pass_stime, gauge_zeta_alti),
                  xytext=(alti_pass_stime + 1, gauge_zeta_alti + 0.1))
plot_obj.annotate(select_time[point_first].strftime('%m-%dT%H:%M'),
                  xy=(select_time_stamp[point_first], select_gauge_zeta[point_first]),
                  xytext=(
                  select_time_stamp[point_first] + 1, select_gauge_zeta[point_first] + 0.1))
out_put = r'D:\2018_2019_research\china_sea_1993\images\final\before\gauge_xiamen.svg'
plot_obj.save(out_put)
plot_obj.show()
Esempio n. 12
0
select_lat = depth_lat[lat_index_down:lat_index_up + 1]
select_lon = depth_lon[lon_index_left:lon_index_right + 1]
select_depth = depth[lat_index_down:lat_index_up + 1,
                     lon_index_left:lon_index_right + 1]
# 插值水深
interp_depth = []
func = interp2d(select_lon, select_lat, select_depth)
for i in range(len(lat)):
    z = func(lon[i], lat[i])
    interp_depth.append(z)
# 计算距离
distance = []
for j in range(len(lat)):
    dis = distance_on_sphere(lon[0], lat[0], lon[j], lat[j]) / 1000
    distance.append(dis)
# 画图
plot_obj = PlotFigure(cartesian=True,
                      x_label='Distance(km)',
                      y_label='Depth(m)',
                      extents=[0, 500, -2500, 0])
plot_obj.plot_lines(distance, interp_depth)
plot_obj.plot_lines()
plot_obj.ax.xaxis.set_ticks_position('top')
plot_obj.ax.xaxis.set_label_position('top')
plot_obj.ax.spines['bottom'].set_visible(False)
plot_obj.ax.spines['right'].set_visible(False)

output = r'D:\2018_2019_research\china_sea_1993\images\final\before\section2.svg'
# plot_obj.save(output)
plot_obj.show()
Esempio n. 13
0
                     extents=[105, 135, 5, 40])

# 选择画图的时间范围
start_time = datetime(1993, 9, 25, 0)
end_time = datetime(1993, 10, 12, 18)
start_time_stamp = date2num(start_time)
end_time_stamp = date2num(end_time)
start_indx = np.where(start_time_stamp == temp_data.data.time)[0][0]
end_indx = np.where(end_time_stamp == temp_data.data.time)[0][0]
select_t2m = temp_data.data.t2m[start_indx:end_indx + 1, :, :]
select_sst = temp_data.data.sst[start_indx:end_indx + 1, :, :]
select_time = temp_data.data.time[start_indx:end_indx + 1]

# 作图
for itime in range(len(select_time)):
    title = num2date(select_time[itime]).strftime('%Y-%m-%dT%H')
    temp_plot = PlotFigure(extents=[110, 135, 15, 40],
                           tick_inc=[4, 5],
                           title=title,
                           cb_label='℃',
                           cb_lim=[18, 36])
    temp_plot.plot_surface(temp_data.data.lon, temp_data.data.lat,
                           select_t2m[itime, :, :])
    temp_plot.fill_region(city='Fujian', taiwan=True)
    out_dir = r'D:\2018_2019_research\china_sea_1993\images\papar_images\ecmwf_t2m'
    outname = 't2m' + num2date(
        select_time[itime]).strftime('%Y%m%dT%H') + '.png'
    out_path = os.path.join(out_dir, outname)
    temp_plot.save(out_path, dpi=300)
    # temp_plot.show()