Esempio n. 1
0
def parse_slim_organization(lines, mtypes, elements, mutrate):
    start = lines.index("#CHROMOSOME ORGANIZATION")
    end = get_next_block_starts(lines, start)
    #need to get sum of all weights per mutation type
    ttlweights = {}
    for key1 in elements:
        ttlweights[key1] = 0.
        for key2 in elements[key1]:
            ttlweights[key1] = ttlweights[key1] + elements[key1][key2]
    nregions = []
    sregions = []
    mun = 0
    mus = 0
    for i in lines[start + 1:start + 1 + end]:
        t = i.split()
        ebeg = float(t[1])
        eend = float(t[2])
        for key in elements[t[0]]:
            mt = mtypes[key]
            weight = elements[t[0]][key] / ttlweights[t[0]]
            ##In this block, we halve s or mean s,
            ##and double h, to convert from SLiM's
            ##fitness model of 1,1+hs,1+s to the
            ##1,1+sh,1+2s used here.
            if mt[1] == 'f':
                if mt[2] == 0.:  #is a neutral mutation
                    mun = mun + mutrate * weight * (eend - ebeg + 1.)
                    nregions.append(
                        fwdpy.Region(ebeg - 1., eend, mutrate * weight))
                else:
                    mus = mus + mutrate * weight * (eend - ebeg + 1.)
                    sregions.append(
                        fwdpy.ConstantS(ebeg - 1., eend, mutrate * weight,
                                        0.5 * mt[2], 2 * mt[0]))
            elif mt[1] == 'e':
                mus = mus + mutrate * weight * (eend - ebeg + 1.)
                sregions.append(
                    fwdpy.ExpS(ebeg - 1., eend, mutrate * weight, 0.5 * mt[2],
                               2 * mt[0]))
            elif mt[1] == 'g':
                mus = mus + mutrate * weight * (eend - ebeg + 1.)
                sregions.append(
                    fwdpy.GammaS(ebeg - 1., eend, mutrate * weight,
                                 0.5 * mt[2], mt[3], 2 * mt[0]))
            else:
                raise RuntimeError("invalid DFE encountered")
    return {
        'nregions': nregions,
        'sregions': sregions,
        'mu_neutral': mun,
        'mu_selected': mus
    }
def make_buried_rec_region(littler):
    """
    For a region of size littler in 
    a larger 50cM region, set up the 
    boundaries, assuming littler 
    corresponds to recombination
    along the interval [0,1)
    """
    rest = 0.5-littler
    ratio = rest/littler
    return {'region':[fp.Region(-ratio,1+ratio,1)],
            'beg':-ratio,
            'end':(1+ratio)}
Esempio n. 3
0
def parse_slim_recrates(lines):
    start = lines.index("#RECOMBINATION RATE")
    end = get_next_block_starts(lines, start)
    regions = []
    recrate = 0.
    laststart = float(0.0)
    for i in lines[start + 1:start + 1 + end]:
        t = i.split()
        stop = float(t[0])
        weight = float(t[1])
        if weight > 0.:
            ##NEED TO DOCUMENT THE + 1
            regions.append(fwdpy.Region(laststart, stop, weight))
            recrate = recrate + weight * (stop - laststart)
        laststart = float(stop)

    return {'recrate': recrate, 'recregions': regions}
Esempio n. 4
0
from __future__ import print_function
#Import fwdpy.  Give it a shorter name
import fwdpy as fp
##Other libs we need
import numpy as np
import pandas
import math


# ### Establishing 'regions' for mutation and recombination
# 

# In[2]:

# Where neutral mutations occur:
nregions = [fp.Region(beg=0,end=1,weight=1)]


# In[3]:

# Where selected mutations occur:
sregions = [fp.ConstantS(beg=-1,end=0,weight=1,s=-0.05,h=1),
            fp.ConstantS(beg=1,end=2,weight=1,s=-0.05,h=1)]


# In[4]:

# Recombination:
recregions = [fp.Region(beg=-1,end=2,weight=1)]

#over time, to show relation of simulation
#params to HoC approximation

#This script varies mu with VS=1 and varies sigma_mu
#such that mu*(sigma_mu^2) is constant

import fwdpy as fp
import fwdpy.qtrait as qt
import pandas as pd
import numpy as np
import math, sys
import matplotlib
import matplotlib.pyplot as plt

nregions = []
rregions = [fp.Region(0, 1, 1)]

reference_mu = 1e-3
recrate = 0.5
N = 1000
simlen = 10 * N
Nlist = np.array([N] * (simlen), dtype=np.uint32)
#grid of VS values.  1 is our reference value
relative_mu = [0.25, 0.5, 1.0, 5.0, 10.0]

reference_sigma = math.sqrt(0.05)
reference_vm = 2.0 * reference_mu * (math.pow(reference_sigma, 2.0))
reference_vg = 4 * reference_mu * 1.0
rng = fp.GSLrng(1525152)

#plot VG, ebar, tbar,max_expl over time
Esempio n. 6
0
#The next three lines process and compile our custom fitness module:
import pyximport
pyximport.install()
import test_fwdpy_extensions.test_custom_fitness as tfp
#import fwdpy and numpy as usual
import fwdpy as fp
import numpy as np

rng = fp.GSLrng(101)
rngs = fp.GSLrng(202)
p = fp.SpopVec(3, 1000)
s = fp.NothingSampler(len(p))

n = np.array([1000] * 1000, dtype=np.uint32)
nr = [fp.Region(0, 1, 1)]
sr = [fp.ExpS(0, 1, 1, 0.1)]

#Now, let's do some evolution with our 'custom' fitness functions:
fitness = tfp.AdditiveFitnessTesting()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)

fitness = tfp.AaOnlyTesting()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)

fitness = tfp.GBRFitness()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)
Esempio n. 7
0
def main():
    try:
        opts, args = getopt.getopt(sys.argv[1:],"m:e:H:S:O:N:s:r:",["fixed=","ages=","traj="])
    except getopt.GetoptError as err:
        # print help information and exit:
        print(err) # will print something like "option -a not recognized"
        usage()
        sys.exit(2)
    #set up default params
    N=1000   # pop size
    e = 0.25 # s.d. of effect sizes
    S = 1    # V(S)
    H = None # desired b-sense H^2
    m = None # Mutation rate (per gamete, per generation) to alleles affecting trait value
    r = 0.5 # rec. rate (per diploid, per gen)
    Opt = 0.0  # Value of optimum after 10N gens
    fixationsFile=None
    lostFile=None
    trajFile=None
    seed = 0
    for o,a in opts:
        if o == '-m':
            m = float(a)
        elif o == '-e':
            e = float(a)
        elif o == '-H':
            H = float(a)
        elif o == '-S':
            S = float(a)
        elif o == '-O':
            Opt = float(a)
        elif o == '-N':
            N=int(a)
        elif o == '-s':
            seed = int(a)
        elif o == '-r':
            r = float(a)
        elif o == '--fixed':
            fixationsFile=a
        elif o == '--ages':
            lostFile=a
        elif o == '--traj':
            trajFile=a

    if H is None:
        usage()
        sys.exit(2)
    if m is None:
        usage()
        sys.exit(2)
    if fixationsFile is None or lostFile is None or trajFile is None:
        usage()
        sys.exit(2)

    rng = fp.GSLrng(seed)
    hdf_fixed = pd.HDFStore(fixationsFile,'w',complevel=6,complib='zlib')
    hdf_fixed.open()
    hdf_lost = pd.HDFStore(lostFile,'w',complevel=6,complib='zlib')
    hdf_lost.open()
    hdf_traj = pd.HDFStore(trajFile,'w',complevel=6,complib='zlib')
    hdf_traj.open()
    sigE = get_sigE_additive(m,S,H)

    nregions = []
    recregions = [fp.Region(0,1,1)]
    sregions = [fp.GaussianS(0,1,1,e)]
    #population size over time -- constant & we re-use this over and over
    nlist = np.array([N]*(10*N),dtype=np.uint32)

    REPLICATE=0
    #16 batches of 64 runs = 1024 replicates
    for i in range(16):
        #set up populations
        pops=fp.SpopVec(64,N)
        #Evolve to equilibrium
        sampler = fp.FreqSampler(len(pops))
        qt.evolve_regions_qtrait_sampler(rng,
                                         pops,
                                         sampler,
                                         nlist[0:],
                                         0,
                                         m,
                                         r,
                                         nregions,sregions,recregions,
                                         sigmaE=sigE,
                                         sample=1,
                                         VS=S) ##Do not track popstats during "burn-in"

        traj1=sampler.get()
        sampler = fp.FreqSampler(len(pops))
        #evolve for another 10N generations at new optimum
        qt.evolve_regions_qtrait_sampler(rng,pops,sampler,
                                         nlist[0:],
                                         0,
                                         m,
                                         r,
                                         nregions,sregions,recregions,
                                         sigmaE=sigE,
                                         VS=S,optimum=Opt,sample=1)
        traj2=sampler.get()
        AGES=[]
        FIXATIONS=[]
        #merge trajectories and get allele ages (parallelized via open MP)
        traj1=fp.merge_trajectories(traj1,traj2)
        ages = fp.allele_ages(traj1)
        REPTEMP=REPLICATE
        for ai in range(len(ages)):
            dfi=pd.DataFrame(ages[ai])
            dfi['rep']=[REPTEMP]*len(dfi.index)
            FIXATIONS.append(dfi[dfi['max_freq']==1.0])
            AGES.append(dfi[dfi['max_freq']<1.0])
            REPTEMP+=1
        # for j in range(len(pops)):
        #     #Merge all trajectories for this replicate
        #     df = pd.concat([pd.DataFrame(traj1[j]),
        #                     pd.DataFrame(traj2[j])])
        #     for name,group in df.groupby(['pos','esize']):
        #         if group.freq.max() < 1:  #mutation did not reach fixation...
        #             if group.generation.max()-group.generation.min()>1: #... and it lived > 1 generation ...
        #                AGES.append({'rep':REPLICATE,
        #                             'esize':name[1],
        #                             'origin':group.generation.min(),
        #                             'final_g':group.generation.max(),
        #                             'max_q':group.freq.max(),
        #                             'last_q':group.freq.iloc[-1]})
        #         else: #mutation did reach fixation!
        #             FIXATIONS.append({'rep':REPLICATE,
        #                               'esize':name[1],
        #                               'origin':group.generation.min(),
        #                               'final_g':group.generation.max()})
        #     REPLICATE+=1

        ##Add more info into the trajectories
        for t in traj1:
            LD=[]
            for i in t:
                I=int(0)
                for j in i[1]:
                    x=copy.deepcopy(i[0])
                    x['freq']=j
                    x['generation']=i[0]['origin']+I
                    I+=1
                    LD.append(x)
            d=pd.DataFrame(LD)
            d['rep']=[REPLICATE]*len(d.index)
            REPLICATE+=1
            hdf_traj.append('trajectories',d)

        hdf_fixed.append('fixations',pd.concat(FIXATIONS))
        hdf_lost.append('allele_ages',pd.concat(AGES))

    hdf_fixed.close()
    hdf_lost.close()
    hdf_traj.close()
def make_neutral_region():
    return [fp.Region(0,1,1)]
Esempio n. 9
0
import unittest
import fwdpy
import numpy as np

nregions = [fwdpy.Region(0, 1, 1), fwdpy.Region(2, 3, 1)]
sregions = [fwdpy.ExpS(1, 2, 1, -0.1), fwdpy.ExpS(1, 2, 0.01, 0.001)]
rregions = [fwdpy.Region(0, 3, 1)]
rng = fwdpy.GSLrng(100)
N = 1000
NGENS = 100
popsizes = np.array([N], dtype=np.uint32)
popsizes = np.tile(popsizes, NGENS)
pops = fwdpy.evolve_regions(rng, 1, N, popsizes[0:], 0.001, 0.0001, 0.001,
                            nregions, sregions, rregions)

#The sum of the gamete counts must be 2*(deme size):
#mpops = fwdpy.evolve_regions_split(rng,pops,popsizes[0:],popsizes[0:],0.001,0.0001,0.001,nregions,sregions,rregions,[0]*2)


class test_singlepop_views(unittest.TestCase):
    def testNumGametes(self):
        gams = fwdpy.view_gametes(pops[0])
        nsingle = 0
        for i in gams:
            nsingle += i['n']
        self.assertEqual(nsingle, 2000)

    def testDipsize(self):
        dips_single = fwdpy.view_diploids(pops[0], [0, 1, 2])
        self.assertEqual(len(dips_single), 3)
Esempio n. 10
0
import fwdpy as fp
import numpy as np
rng = fp.GSLrng(101)
N=1000
nlist=np.array([N]*10*N,dtype=np.uint32)
p=fp.evolve_regions(rng,
                    64,N,
                    nlist,
                    0.25,
                    0.0,
                    0.25,
                    [fp.Region(0,1,1)],
                    [],
                    [fp.Region(0,1,1)])
#p.append(p2)
#print len(p)
#v = fp.view_diploids_pd(p,range(0,N,1))
#v=[fp.view_diploids(i,range(0,N,1)) for i in p]
#b = fp.view_diploids_pd(p,range(0,N,1))
#print b
#for i in v:
#    print i
#g = [i.gen() for i in p]
#print g

#d = fp.view_diploids(p,[0,1])

#print d
     
Esempio n. 11
0
NB = 50
NCORES = 40
NPIK = NCORES * NB
f = gzip.open(PIK, "wb")
N = 1000
scaled_sigmaMU = 250.0
sigMU = scaled_sigmaMU / N
theta_n = 100.0
rho_n = 100.0
mun = 0.0  #theta_n/(4*N)
littler = rho_n / (4 * N)
rest = r - littler
ratio = rest / r
sample_interval = 0.01  #In units of N generations
print sigMU, " ", mun, " ", int(sample_interval * N)
neutmutregions = [fp.Region(0, 0.1, 1)]
#selmutregions=[fp.GaussianS(-ratio,1+ratio,1,sigMU)]
#recregions= [fp.Region(-ratio,1+ratio,1)]
selmutregions = [fp.GaussianS(0, 0.1, 1, sigMU)]
recregions = [fp.Region(0, 0.1, 1)]

pickle.dump(NPIK, f)
REP = 0
for i in range(NB):
    nlist = np.array([N] * (10 * N), dtype=np.uint32)
    #Evolve to equilibrium
    pops = fp.popvec(NCORES, N)
    samples = qt.evolve_qtrait_track(rng,
                                     pops,
                                     nlist[0:],
                                     mun,
def main():
    try:
        opts, args = getopt.getopt(sys.argv[1:], "m:e:H:S:O:N:t:s:F:r:",
                                   ["cores=", "batches="])
    except getopt.GetoptError as err:
        # print help information and exit:
        print(err)  # will print something like "option -a not recognized"
        usage()
        sys.exit(2)
    #set up default params
    N = 1000  # pop size
    t = None  # 0.1N
    e = 0.25  # s.d. of effect sizes
    S = 1  # V(S)
    H = None  # desired b-sense H^2
    m = None  # Mutation rate (per gamete, per generation) to alleles affecting trait value
    r = 0.5  # rec. rate (per diploid, per gen)
    Opt = 0.0  # Value of optimum after 10N gens
    ofile = None
    seed = 0
    ncores = 64
    nbatches = 16
    for o, a in opts:
        if o == '-m':
            m = float(a)
        elif o == '-e':
            e = float(a)
        elif o == '-H':
            H = float(a)
        elif o == '-S':
            S = float(a)
        elif o == '-O':
            Opt = float(a)
        elif o == '-N':
            N = int(a)
        elif o == '-t':
            t = int(a)
        elif o == '-s':
            seed = int(a)
        elif o == '-F':
            ofile = a
        elif o == '-r':
            r = float(a)
        elif o == '--cores':
            ncores = int(a)
        elif o == '--batches':
            nbatches = int(a)

    if t is None:
        t = int(0.1 * float(N))
    if H is None:
        usage()
        sys.exit(2)
    if m is None:
        usage()
        sys.exit(2)
    if ofile is None:
        usage()
        sys.exit(2)

    rng = fp.GSLrng(seed)
    hdf = pd.HDFStore(ofile, 'w', complevel=6, complib='zlib')
    hdf.open()

    sigE = get_sigE_additive(m, S, H)

    nregions = []
    recregions = [fp.Region(0, 1, 1)]
    sregions = [fp.GaussianS(0, 1, 1, e)]
    #population size over time -- constant & we re-use this over and over
    nlist = np.array([N] * (10 * N), dtype=np.uint32)
    #16 batches of 64 runs = 1024 replicates
    fitness = qt.SpopAdditiveTrait()
    REPLICATE = 0
    for i in range(nbatches):
        pops = fp.SpopVec(ncores, N)
        sampler = fp.QtraitStatsSampler(len(pops), 0.0)
        #Evolve to equilibrium, tracking along the way
        qt.evolve_regions_qtrait_sampler_fitness(rng,
                                                 pops,
                                                 sampler,
                                                 fitness,
                                                 nlist[0:],
                                                 0,
                                                 m,
                                                 r,
                                                 nregions,
                                                 sregions,
                                                 recregions,
                                                 sigmaE=sigE,
                                                 sample=t,
                                                 VS=S,
                                                 optimum=0)
        stats = sampler.get()
        RTEMP = REPLICATE
        for si in stats:
            ti = pd.DataFrame(si)
            ti['rep'] = [RTEMP] * len(ti.index)
            RTEMP += 1
            hdf.append('popstats', ti)
        #simulate another 10*N generations, sampling stats every 't' generations
        sampler = fp.QtraitStatsSampler(len(pops), Opt)
        qt.evolve_regions_qtrait_sampler_fitness(rng,
                                                 pops,
                                                 sampler,
                                                 fitness,
                                                 nlist[0:],
                                                 0,
                                                 m,
                                                 r,
                                                 nregions,
                                                 sregions,
                                                 recregions,
                                                 sigmaE=sigE,
                                                 sample=t,
                                                 VS=S,
                                                 optimum=Opt)
        stats = sampler.get()
        for si in stats:
            ti = pd.DataFrame(si)
            ti['rep'] = [REPLICATE] * len(ti.index)
            hdf.append('popstats', ti)
            REPLICATE += 1

    hdf.close()
Esempio n. 13
0
def main():
    parser=make_parser()
    args=parser.parse_args(sys.argv[1:])

    if args.verbose:
        print (args)
    ##Figure out sigma_E from params
    sigE = get_sigE_additive(args.mutrate,args.VS,args.H2)

    trait = get_trait_model(args.trait)

    nlist = np.array([args.popsize]*(10*args.popsize),dtype=np.uint32)
    rng=fp.GSLrng(args.seed)
    mu_neutral = 0.0
    nregions=[]
    sregions=[fp.GaussianS(0,1,1,args.sigmu,args.dominance)]
    recregions=[fp.Region(0,1,1)]
    
    if args.sampler == 'stats':
        output=pd.HDFStore(args.outfile,'w',complevel=6,complib='zlib')
        output.close()
    REPID=0
    for BATCH in range(args.nbatches):
        pops=fp.SpopVec(args.ncores,args.popsize)
        sampler=get_sampler_type(args.sampler,args.trait,len(pops),0.0)
        qt.evolve_regions_qtrait_sampler_fitness(rng,pops,sampler,trait,
                                                 nlist,
                                                 0.0,
                                                 args.mutrate,
                                                 args.recrate,
                                                 nregions,
                                                 sregions,
                                                 recregions,
                                                 args.tsample,
                                                 sigE,
                                                 optimum=0.0,
                                                 VS=args.VS)
        if args.sampler != 'freq':
            if args.sampler == 'freq':
                dummy=write_output(sampler,args,REPID,BATCH,'w')
            elif args.sampler == 'stats':
                dummy=write_output(sampler,args,REPID,BATCH,'a')
            else:
                dummy=write_output(sampler,args,REPID,BATCH,'a')
            sampler=get_sampler_type(args.sampler,args.trait,len(pops),args.optimum)
        qt.evolve_regions_qtrait_sampler_fitness(rng,pops,sampler,trait,
                                                 nlist,
                                                 0.0,
                                                 args.mutrate,
                                                 args.recrate,
                                                 nregions,
                                                 sregions,
                                                 recregions,
                                                 args.tsample,
                                                 sigE,
                                                 optimum=args.optimum,
                                                 VS=args.VS)
        if args.sampler == 'freq':
            #Append this time!
            REPID=write_output(sampler,args,REPID,BATCH,'w')
        elif args.sampler == 'stats':
            REPID=write_output(sampler,args,REPID,BATCH,'a')
        else:
            REPID=write_output(sampler,args,REPID,BATCH,'a')
Esempio n. 14
0
import datetime
import time

# In[26]:

##Info
dt = datetime.datetime.now()
print("This example was processed using ", fp.pkg_version(), "on", dt.month,
      "/", dt.day, "/", dt.year)
print("The dependency versions are", fp.pkg_dependencies())

# In[27]:

#set up our sim
rng = fp.GSLrng(101)
nregions = [fp.Region(0, 1, 1), fp.Region(2, 3, 1)]
sregions = [fp.ExpS(1, 2, 1, -0.1), fp.ExpS(1, 2, 0.1, 0.001)]
rregions = [fp.Region(0, 3, 1)]
popsizes = np.array([1000] * 10000, dtype=np.uint32)

# In[28]:

#Run the sim
pops = fp.evolve_regions(rng, 4, 1000, popsizes[0:], 0.001, 0.0001, 0.001,
                         nregions, sregions, rregions)

# In[29]:

#Take samples from the simulation
samples = [fp.get_samples(rng, i, 20) for i in pops]
Esempio n. 15
0
def run_batch(argtuple):
    args, repid, batch = argtuple
    print("seed for batch = ", args.seed)
    nstub = "neutral.mu" + str(args.mu) + ".opt" + str(args.opt)
    sstub = "selected.mu" + str(args.mu) + ".opt" + str(args.opt)
    rnge = fp.GSLrng(args.seed)

    NANC = 7310
    locus_boundaries = [(float(i + i * 11), float(i + i * 11 + 11))
                        for i in range(args.nloci)]
    nregions = [
        fp.Region(j[0], j[1], args.theta / (4. * float(NANC)), coupled=True)
        for i, j in zip(range(args.nloci), locus_boundaries)
    ]
    recregions = [
        fp.Region(j[0], j[1], args.rho / (4. * float(NANC)), coupled=True)
        for i, j in zip(range(args.nloci), locus_boundaries)
    ]
    sregions = [
        fp.GaussianS(j[0] + 5., j[0] + 6., args.mu, args.sigmu, coupled=False)
        for i, j in zip(range(args.nloci), locus_boundaries)
    ]
    f = qtm.MlocusAdditiveTrait()

    nlist = np.array(get_nlist1(), dtype=np.uint32)
    pops = fp.MlocusPopVec(args.ncores, nlist[0], args.nloci)
    sampler = fp.NothingSampler(len(pops))
    d = datetime.datetime.now()
    print("starting batch, ", batch, "at ", d.now())
    qtm.evolve_qtraits_mloc_regions_sample_fitness(rnge, pops, sampler, f,
                                                   nlist[0:], nregions,
                                                   sregions, recregions,
                                                   [0.5] * (args.nloci - 1), 0,
                                                   0, 0.)
    d = datetime.datetime.now()
    print(d.now())
    nlist = np.array(get_nlist2(), dtype=np.uint32)
    qtm.evolve_qtraits_mloc_regions_sample_fitness(rnge, pops, sampler, f,
                                                   nlist[0:], nregions,
                                                   sregions, recregions,
                                                   [0.5] * (args.nloci - 1), 0,
                                                   args.opt)
    d = datetime.datetime.now()
    print(d.now())
    if args.statfile is not None:
        sched = lsp.scheduler_init(args.TBB)
    for pi in pops:
        #Apply the sampler 1 population at a time.
        #This saves a fair bit of RAM.
        neutralFile = nstub + '.rep' + str(repid) + '.gz'
        selectedFile = sstub + '.rep' + str(repid) + '.gz'
        BIGsampler = fp.PopSampler(1,
                                   6000,
                                   rnge,
                                   False,
                                   neutralFile,
                                   selectedFile,
                                   recordSamples=True,
                                   boundaries=locus_boundaries)
        fp.apply_sampler_single(pi, BIGsampler)
        if args.statfile is not None:
            for di in BIGsampler:
                process_samples((di, args.statfile, locus_boundaries, repid))
        repid += 1
    pops.clear()
    pops = None