Esempio n. 1
0
    def testPopGenSim(self):
        N = 1000
        demography = np.array([N] * 10 * N, dtype=np.uint32)
        rho = 1.
        r = rho / (4 * N)

        a = fwdpy11.Multiplicative(2.0)
        p = {
            'nregions': [],
            'sregions': [fwdpy11.ExpS(0, 1, 1, 0.01)],
            'recregions': [fwdpy11.Region(0, 1, 1)],
            'rates': (0.0, 0.00005, r),
            'gvalue': a,
            'prune_selected': True,
            'demography': demography
        }
        params = fwdpy11.ModelParams(**p)
        rng = fwdpy11.GSLrng(101 * 45 * 110 * 210)
        pop = fwdpy11.DiploidPopulation(N, 1.0)
        fwdpy11.evolvets(rng, pop, params, 100, track_mutation_counts=True)
        mc = fwdpy11.count_mutations(pop.tables, pop.mutations,
                                     [i for i in range(2 * pop.N)])
        assert len(pop.fixations) > 0, "Test is meaningless without fixations"
        fixations = np.where(mc == 2 * pop.N)[0]
        self.assertEqual(len(fixations), 0)

        # Brute-force calculation of fixations
        brute_force = np.zeros(len(pop.mutations), dtype=np.int32)
        for g in pop.haploid_genomes:
            if g.n > 0:
                for k in g.smutations:
                    brute_force[k] += g.n

        self.assertTrue(np.array_equal(brute_force, mc))
        self.assertTrue(np.array_equal(brute_force, pop.mcounts))
Esempio n. 2
0
 def test_count_mutations_preserved_samples(self):
     mc = fwdpy11.count_mutations(self.pop, self.pop.tables.preserved_nodes)
     pmc = np.array(self.pop.mcounts_ancient_samples)
     self.assertTrue(np.array_equal(mc, pmc))
Esempio n. 3
0
 def test_count_mutations(self):
     mc = fwdpy11.count_mutations(self.pop,
                                  [i for i in range(2 * self.pop.N)])
     pmc = np.array(self.pop.mcounts)
     self.assertTrue(np.array_equal(mc, pmc))