Esempio n. 1
0
 def market_data_panel(self, freq="D"):
     start, end = self.date_range
     df = DataAPI.candle(self.universe, start=start, end=end,
                         freq=freq).transpose(2, 1, 0)
     if freq == "D":
         df.major_axis = df.major_axis.normalize()
     return df
Esempio n. 2
0
def read_benchmark(start, end, index_code="000300.XSHG", freq="D"):
    """
    获取指数行情数据
    :param start:起始时间(datetime)
    :param end:结束时间(datetime)
    :param index_code:指数代码(str)
    :param freq:数据频率(str)
    :return:指数行情。返回一个benchmark对象
                     包含五个属性。"index", "close", "open", "high", "low"。
                     "index":一个MultiIndex Series的序列。索引为date (level 0) 和 asset (level 1),包含一列factor值。其中asset的值固定是index_code,
                      factor值固定是1。用于fxdayu_alphaman.selector.selector_analysis.get_stocklist_mean_return中
                      作为stock_list参数来计算指数收益。
                     "close":收盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的收盘价。
                     "open":开盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的开盘价。
                     "high":最高价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最高价。
                     "low":最低价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最低价。
    """
    benchmark = Benchmark()
    benchmark_value = DataAPI.candle((index_code,), freq=freq, start=start, end=end)
    benchmark.open = benchmark_value.minor_xs("open")
    if len(benchmark.open)==0:
        raise ValueError
    benchmark.high = benchmark_value.minor_xs("high")
    benchmark.low = benchmark_value.minor_xs("low")
    benchmark.close = benchmark_value.minor_xs("close")
    benchmark.open.index.name = "date"
    benchmark.high.index.name = "date"
    benchmark.low.index.name = "date"
    benchmark.close.index.name = "date"

    benchmark.index = pd.DataFrame(data=benchmark.open.index)
    benchmark.index["asset"] = index_code
    benchmark.index["factor"] = 1
    benchmark.index = benchmark.index.set_index(["date", "asset"])
    return benchmark
Esempio n. 3
0
 def get_price_data(pool, start, end, max_window=10):
     data = DataAPI.candle(
         tuple(pool),
         "D",
         start=start - datetime.timedelta(days=max_window),
         end=end + datetime.timedelta(days=max_window))
     data = data.replace(to_replace=0, value=np.NaN)
     return data
Esempio n. 4
0
def read_LFLO(symbols, start, end):
    """
    获取对数流通市值
    :param symbols: 一组股票代码(list),形式为通用标准(编码.交易所 如["000001.XSHE","600000.XSHG"])
    :param start: 开始时间(datetime)
    :param end:结束时间(datetime)
    :return: 对数流通市值。(pandas.Dataframe) index为datetime,columns为股票代码,值为对应股票对应时间的对数流通市值。
    """
    LFLO = DataAPI.factor(tuple(symbols), fields="LFLO", start=start,
                          end=end).minor_xs("LFLO")
    return LFLO
Esempio n. 5
0
    def market_data(self):
        start, end = self.date_range
        df = DataAPI.candle(self.universe,
                            fields=["close"],
                            start=start,
                            end=end,
                            freq=self._freq).loc[:, :, "close"].T

        df.index.name = "order_book_id"
        series = df.stack()
        series.name = "close"
        return series
Esempio n. 6
0
 def benchmark_rets(self, code="000300.XSHG", freq="D", isIndex=True):
     start, end = self.date_range
     adjust = None
     if not isIndex:
         adjust = "before"
     benchmark = DataAPI.candle(code,
                                freq=freq,
                                fields="close",
                                start=start,
                                end=end,
                                adjust=adjust)
     benchmark_rets = benchmark["close"].pct_change()
     benchmark_rets.name = "benchmark_rets"
     if freq == "D":
         benchmark_rets.index = benchmark_rets.index.normalize()
     return benchmark_rets
Esempio n. 7
0
    def execute(self, pool, start, end, data=None, data_config=None):
        """
        计算选股结果

        :param pool: list 待选股票池
               data:进行选股操作所需要的数据
               start:datetime 选股索引范围起始时间
               end:datetime 选股索引范围结束时间
        :return:selector_result:A MultiIndex Series indexed by date (level 0) and asset (level 1), containing
        the values mean whether choose the asset or not.

            -----------------------------------
                date    |    asset   |
            -----------------------------------
                        |   AAPL     |   1
                        -----------------------
                        |   BA       |  1
                        -----------------------
            2014-01-01  |   CMG      |   1
                        -----------------------
                        |   DAL      |  0
                        -----------------------
                        |   LULU     |   -1
                        -----------------------
        """

        if data is None:
            data = DataAPI.get(symbols=tuple(pool),
                               start=start -
                               datetime.timedelta(days=self.max_window),
                               end=end,
                               **data_config)

        factor = Factor_Volume003().get_factor(data, update=True)

        quantiles = self.get_quantiles(factor)
        selector_result = quantiles.copy()
        selector_result[:] = 0
        selector_result[quantiles == self.choose_quantile] = 1

        return selector_result.loc[start:end]
Esempio n. 8
0
    def execute(self, pool, start, end, data=None, data_config=None):
        """
        计算选股结果

        :param pool: list 待选股票池
               data:进行选股操作所需要的数据
               start:datetime 选股索引范围起始时间
               end:datetime 选股索引范围结束时间
        :return:selector_result:A MultiIndex Series indexed by date (level 0) and asset (level 1), containing
        the values mean whether choose the asset or not.

            -----------------------------------
                date    |    asset   |
            -----------------------------------
                        |   AAPL     |   1
                        -----------------------
                        |   BA       |  1
                        -----------------------
            2014-01-01  |   CMG      |   1
                        -----------------------
                        |   DAL      |  0
                        -----------------------
                        |   LULU     |   -1
                        -----------------------
        """

        if data is None:
            data = DataAPI.get(symbols=tuple(pool),
                               start=start -
                               datetime.timedelta(days=self.max_window),
                               end=end,
                               **data_config)

        selector_result = list(
            map(self.calculate_MACD_signal, data.iteritems()))
        selector_result = pd.concat(selector_result, axis=1).stack()
        selector_result.index.names = ["date", "asset"]
        return selector_result.loc[start:end]
# 配置选股器所在包路径
Admin.PACKAGE_NAME = "fxdayu_alphaman.examples.factors"

# 初始选股范围设置
initial_codes = standard_code_style(
    json.load(open('test_stock_pool.json'))["test_stock_pool"])
data_config = {"freq": "D", "api": "candle", "adjust": "after"}

# 测试参数设置
start = datetime.datetime(2017, 1, 1)
end = datetime.datetime(2017, 4, 18, 15)
periods = (1, 5, 10)

# 获取数据
data = DataAPI.get(symbols=tuple(initial_codes),
                   start=start - datetime.timedelta(days=100),
                   end=end,
                   **data_config)

prices = data.minor_xs("close")


def manage_factors_value_test(factor_name_list, data_config_dict):
    # admin测试 -获得多个因子结果
    factor_admin = Admin(*factor_name_list)
    factors_dict = factor_admin.get_all_factors_value(
        initial_codes,
        start,
        end,
        all_factors_data_config_dict=data_config_dict)

    return factor_admin, factors_dict
Esempio n. 10
0
    def instantiate_factor_and_get_factor_value(factor_name,
                                                pool,
                                                start,
                                                end,
                                                Factor=None,
                                                data=None,
                                                data_config={"freq": "D", "api": "candle", "adjust": "after"},
                                                para_dict=None,
                                                ):
        """
        计算某个因子指定时间段的因子值 (可支持直接用factor_name加载到对应因子的算法)
        :param factor_name: 因子名称(str) 需确保传入的factor_name、因子的类名、对应的module文件名一致(不含.后缀),因子才能正确加载
        :param pool: 股票池范围(list),如:["000001.XSHE","600300.XSHG",......]
        :param start: 起始时间 (datetime)
        :param end: 结束时间 (datetime)
        :param Factor (optional): 因子(factor.factor.Factor object),可选.可以输入一个设计好的Factor类来执行计算.
        :param data (optional): 计算因子需用到的数据,根据计算需求自行指定。(可选)
        :param data_config (optional): 在data参数为None的情况下(不传入自定义数据),
                                       可通过该参数调用fxdayu_data api 访问到数据 (dict),
                                       与data参数二选一。
        :param para_dict (optional): 外部指定因子里所用到的参数集(dict),为空则不修改原有参数。 形如:{"fast":5,"slow":10}
        :return: factor_value:因子值 格式为一个MultiIndex Series,索引(index)为date(level 0)和asset(level 1),
               包含一列factor值。形如:
                            -----------------------------------
                                date    |    asset   |
                            -----------------------------------
                                        |   AAPL     |   0.5
                                        -----------------------
                                        |   BA       |  -1.1
                                        -----------------------
                            2014-01-01  |   CMG      |   1.7
                                        -----------------------
                                        |   DAL      |  -0.1
                                        -----------------------
                                        |   LULU     |   2.7
                                        -----------------------
        """

        from fxdayu_data import DataAPI
        import datetime

        # 实例化因子类
        if Factor is None:
            factor = _get_factor(factor_name, Admin.PACKAGE_NAME)()
        else:
            factor = Factor

        # 接收外部传入的参数
        if para_dict:
            for para in list(para_dict.keys()):
                setattr(factor, para, para_dict[para])

        if data is None:
            pn_data = DataAPI.get(symbols=tuple(pool),
                                  start=start - datetime.timedelta(days=factor.max_window),
                                  end=end,
                                  **data_config)
        else:
            pn_data = data

        # 因子计算结果获取
        factor_value = factor.get_factor(pn_data, update=True)

        return factor_value
Esempio n. 11
0
def read_benchmark(start, end, index_code="000300.XSHG", freq="D"):
    """
    获取指数行情数据
    :param start:起始时间(datetime)
    :param end:结束时间(datetime)
    :param index_code:指数代码(str)
    :param freq:数据频率(str)
    :return:指数行情。返回一个benchmark对象
                     包含五个属性。"index", "close", "open", "high", "low"。
                     "index":一个MultiIndex Series的序列。索引为date (level 0) 和 asset (level 1),包含一列factor值。其中asset的值固定是index_code,
                      factor值固定是1。用于fxdayu_alphaman.selector.selector_analysis.get_stocklist_mean_return中
                      作为stock_list参数来计算指数收益。
                     "close":收盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的收盘价。
                     "open":开盘价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的开盘价。
                     "high":最高价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最高价。
                     "low":最低价。(pandas.Dateframe ),index为datetime,column.name 为index_code,值为对应指数的最低价。
    """
    benchmark = Benchmark()
    try:
        benchmark_value = DataAPI.candle((index_code, ),
                                         freq=freq,
                                         start=start,
                                         end=end)
        benchmark.open = benchmark_value.minor_xs("open")
        if len(benchmark.open) == 0:
            raise ValueError
        benchmark.high = benchmark_value.minor_xs("high")
        benchmark.low = benchmark_value.minor_xs("low")
        benchmark.close = benchmark_value.minor_xs("close")
        benchmark.open.index.name = "date"
        benchmark.high.index.name = "date"
        benchmark.low.index.name = "date"
        benchmark.close.index.name = "date"
    except:
        index_value = ts.get_k_data(code=index_code[0:6],
                                    start=start.strftime("%Y-%m-%d"),
                                    end=end.strftime("%Y-%m-%d"),
                                    ktype=freq,
                                    index=True)
        date = index_value.pop('date')
        index_value["date"] = pd.to_datetime(date + " 15:00:00",
                                             format='%Y-%m-%d %H:%M:%S')
        benchmark.close = index_value[["date", "close"]]
        benchmark.open = index_value[["date", "open"]]
        benchmark.high = index_value[["date", "high"]]
        benchmark.low = index_value[["date", "low"]]
        benchmark.close.columns = ["date", index_code]
        benchmark.open.columns = ["date", index_code]
        benchmark.high.columns = ["date", index_code]
        benchmark.low.columns = ["date", index_code]
        benchmark.close = benchmark.close.set_index("date")
        benchmark.open = benchmark.open.set_index("date")
        benchmark.high = benchmark.high.set_index("date")
        benchmark.low = benchmark.low.set_index("date")

    benchmark.index = pd.DataFrame(data=benchmark.open.index)
    benchmark.index["asset"] = index_code
    benchmark.index["factor"] = 1
    benchmark.index = benchmark.index.set_index(["date", "asset"])

    return benchmark
Esempio n. 12
0
from fxdayu_data import DataAPI

print(DataAPI.candle("000001.XSHE"))