Esempio n. 1
0
    def test_read_b01(self):
        diretorio_dados = path.join("datasets", "ORLibrary")
        arquivo_dados = "steinb1.txt"
        arquivo = path.join(diretorio_dados, arquivo_dados)

        reader = ReaderORLibrary()

        stp = reader.parser(arquivo)
        terminais = [48, 49, 22, 35, 27, 12, 37, 34, 24]

        self.assertEqual(stp.nro_nodes,50)
        self.assertEqual(stp.nro_edges,63)
        self.assertEqual(stp.nro_terminals,9)
        self.assertEqual(sorted(stp.terminals),sorted(terminais))

        self.assertEqual(stp.graph[17][42],6)
        self.assertEqual(stp.graph[20][40],10)
        #Ordem inversa ao que aparece no arquivo
        self.assertEqual(stp.graph[6][42],9)
        self.assertEqual(stp.graph[13][50],1)

        self.assertIsInstance(stp.nro_nodes,int)
        self.assertIsInstance(stp.nro_edges,int)
        self.assertIsInstance(stp.nro_terminals,int)
        self.assertIsInstance(stp.terminals,set)
        self.assertIsInstance(stp.graph,Graph)

        self.assertEqual(len(stp.graph.vertices), stp.nro_nodes)

        self.assertEqual(stp.name,'B1')
        self.assertEqual(stp.remark,'Sparse graph with random weights')
        self.assertEqual(stp.creator,'J. E. Beasley')
        self.assertEqual(stp.file_name, arquivo_dados)
Esempio n. 2
0
    def test_vertices_from_chromossome_random_chromosome(self):
        filename = path.join('tests', 'data', 'test1.txt')
        stpg = ReaderORLibrary().parser(filename)

        self.assertIsNotNone(stpg)
        self.assertEqual(stpg.nro_nodes, 7)
        self.assertEqual(stpg.nro_edges, 11)
        self.assertEqual(stpg.nro_terminals, 2)
        self.assertEqual(stpg.terminals, set([1, 5]))

        evaluator = EvaluateKruskalBased(stpg)

        chromosome = '11110'
        vertices_from = evaluator.vertices_from_chromosome(chromosome)
        expected_vertices = set([1, 2, 3, 4, 5, 6])
        self.assertEqual(vertices_from, expected_vertices)

        chromosome = '11111'
        vertices_from = evaluator.vertices_from_chromosome(chromosome)
        expected_vertices = set([1, 2, 3, 4, 5, 6, 7])
        self.assertEqual(vertices_from, expected_vertices)

        chromosome = '10101'
        vertices_from = evaluator.vertices_from_chromosome(chromosome)
        expected_vertices = set([1, 5, 2, 4, 7])
        self.assertEqual(vertices_from, expected_vertices)
Esempio n. 3
0
    def test_GenerateUndirectEdges(self):
        diretorio_dados = path.join("datasets", "ORLibrary")
        arquivo_dados = "steinb1.txt"
        arquivo = path.join(diretorio_dados, arquivo_dados)

        reader = ReaderORLibrary()

        stp = reader.parser(arquivo)

        graph = stp.graph

        edges = set()

        for e in graph.gen_undirect_edges():
            edges.add(e)

        self.assertEqual(len(edges),stp.nro_edges)
Esempio n. 4
0
    def test_evaluate_test2(self):
        filename = path.join('tests', 'data', 'test2.txt')
        stpg = ReaderORLibrary().parser(filename)

        evaluator = EvaluateKruskalBased(stpg)
        chromosome = '11110'
        evaluator_cost, qtd_partitions = evaluator(chromosome)

        self.assertEqual(qtd_partitions, 2)
        self.assertEqual(evaluator_cost, 1021)
Esempio n. 5
0
    def test_best_solution_is_steiner_tree(self):
        filename = path.join('datasets', 'ORLibrary', 'steinb1.txt')
        stpg = ReaderORLibrary().parser(filename)
        coder = Coder(stpg)
        chromosome = "00000010000000001011000110001100010100010"

        subgraph = coder.binary2treegraph(chromosome)

        result, _ = is_steiner_tree(subgraph, stpg)

        self.assertTrue(result)
def simulation(simulation_name, params):

    datasets_folder = path.join("datasets", "ORLibrary")
    filename = path.join(datasets_folder, params["dataset"])
    STPG = ReaderORLibrary().parser(filename)

    print("STPG information", '\n', 10 * '- ', '\n')
    print("Trial: ", parameters['runtrial'])
    print('Instance: ', STPG.name)
    print('Best Known cost: ', params['global_optimum'])
    print("Nro. Node:", STPG.nro_nodes)
    print("Nro. Edges:", STPG.nro_edges)
    print("Nro. Terminals:", STPG.nro_terminals)
    # print("Terminals: \n", STPG.terminals)

    output_folder = path.join("data", simulation_name, STPG.name)
    tracker = DataTracker(params['runtrial'], target=output_folder)

    generator = GenerateBasedPrimRST(STPG)
    evaluator = EvaluateTreeGraph(STPG)
    crossover = CrossoverPrimRST(STPG)
    prunner = Prunning(STPG)
    mut_prim = PrimBasedMutation(STPG)
    replace_random = ReplaceByRandomEdge(STPG)

    population = (GPopulation(
        chromosomes=[generator() for _ in range(params["population_size"])],
        eval_function=evaluator,
        maximize=True).evaluate().normalize(
            norm_function=normalize).callback(update_best))

    evol = (Evolution().evaluate().normalize(norm_function=normalize).callback(
        update_best).callback(tracker.log_evaluation).select(
            selection_func=roullete).crossover(combiner=crossover).mutate(
                mutate_function=replace_random, probability=0.2).mutate(
                    mutate_function=mut_prim, probability=0.2).mutate(
                        mutate_function=prunner,
                        probability=0.2).callback(update_generation).callback(
                            display, every=100))

    with Stagnation(interval=params["stagnation_interval"]), \
         BestKnownReached(global_optimum=params['global_optimum']):
        result = population.evolve(evol, n=params["n_iterations"])

    tracker.log_simulation(params, STPG, result)

    best_overall = result.documented_best
    test, response = is_steiner_tree(best_overall.chromosome, STPG)

    tracker.log_bestIndividual(best_overall, test, response)

    tracker.report()
    def test_if_has_all_terminals(self):
        filename = path.join('datasets', 'ORLibrary', 'steinb15.txt')
        stpg = ReaderORLibrary().parser(filename)
        terminals = stpg.terminals

        crossover = CrossoverPrimRST(stpg)

        parent_a = gen_random_walk(stpg)
        parent_b = gen_random_walk(stpg)
        offspring = crossover(parent_a, parent_b)

        vertices = set([v for v in offspring.vertices])
        self.assertTrue(terminals.issubset(vertices))
    def test_edge_non_exist_in_stpg_instance(self):
        filename = path.join("tests", "data", "test4.txt")
        stpg = ReaderORLibrary().parser(filename)

        tree = UGraph()
        edges = [(1, 3), (3, 8), (8, 5), (5, 6), (8, 9)]
        for edge in edges:
            v, u = edge
            tree.add_edge(v, u)

        evaluator = EvaluateTreeGraph(stpg)
        self.assertTrue(callable(evaluator))

        with self.assertRaises(ValueError):
            cost, __ = evaluator(tree)
    def test_example_solution_two_components(self):
        filename = path.join("tests", "data", "test4.txt")
        stpg = ReaderORLibrary().parser(filename)

        tree = UGraph()
        edges = [(1, 3), (3, 8), (8, 5), (5, 6), (2, 4)]
        for edge in edges:
            v, u = edge
            tree.add_edge(v, u)

        evaluator = EvaluateTreeGraph(stpg)
        self.assertTrue(callable(evaluator))

        cost, nro_partition = evaluator(tree)

        self.assertEqual(nro_partition, 2)
        self.assertEqual(cost, (5 + 7 + 7 + 15 + 16))
Esempio n. 10
0
    def test_if_return_an_edgeset(self):
        filename = path.join('datasets', 'ORLibrary', 'steinb15.txt')
        stpg = ReaderORLibrary().parser(filename)

        crossover = CrossoverPrimRST(stpg)

        parent_a = gen_random_walk(stpg)
        parent_b = gen_random_walk(stpg)

        self.assertIsInstance(parent_a, EdgeSet)
        self.assertIsInstance(parent_b, EdgeSet)

        offspring = crossover(parent_a, parent_b)

        self.assertIsInstance(offspring, EdgeSet)
        self.assertFalse(offspring is parent_a)
        self.assertFalse(offspring is parent_b)

        self.assertNotEqual(offspring, parent_a)
        self.assertNotEqual(offspring, parent_b)
Esempio n. 11
0
    def test_if_is_it_a_tree(self):
        filename = path.join('datasets', 'ORLibrary', 'steinb15.txt')
        stpg = ReaderORLibrary().parser(filename)

        crossover = CrossoverKruskalRST(stpg)

        parent_a = gen_random_walk(stpg)
        parent_b = gen_random_walk(stpg)
        offspring = crossover(parent_a, parent_b)

        tree = UGraph()
        for edge in offspring:
            u, v = edge[0], edge[1]
            tree.add_edge(u, v)

        _, response = is_steiner_tree(tree, stpg)
        self.assertTrue(response['all_terminals_in'])
        self.assertFalse(response['has_cycle'])
        self.assertTrue(response['all_edges_are_reliable'])
        self.assertTrue(response['graph_is_connected'])
    def test_penality_function(self):

        filename = path.join("tests", "data", "test4.txt")
        stpg = ReaderORLibrary().parser(filename)

        tree = UGraph()
        edges = [(1, 3), (3, 8), (8, 5), (5, 6), (2, 4)]
        for edge in edges:
            v, u = edge
            tree.add_edge(v, u)

        evaluator = EvaluateTreeGraph(stpg,
                                      penality_function=lambda nro:
                                      (nro - 1) * 100)
        self.assertTrue(callable(evaluator))

        cost, nro_partition = evaluator(tree)

        self.assertEqual(nro_partition, 2)
        self.assertEqual(cost, (5 + 7 + 7 + 15 + 16 + 100))
Esempio n. 13
0
    def test_evaluate_steinb1(self):
        filename = path.join('datasets', 'ORLibrary', 'steinb1.txt')

        stpg = ReaderORLibrary().parser(filename)
        evaluator = EvaluateKruskalBased(stpg,
                                         penality_function=lambda k:
                                         (k - 1) * 100)

        chromosomes = [("00000010000000001011000110001100010100010", 82),
                       ("00011100101110110011011111001110111000111", 362),
                       ("11111111001011010111100110001101111110011", 209),
                       ("10011010001011001111111111101101110111011", 166),
                       ("10000010000000001011000111001100010101011", 100),
                       ("00000010000010011011000111001100010101010", 97),
                       ("00000010001000000011000111001100010001010", 95),
                       ("00000010000011001011000111001100010100010", 92)]

        for chromosome, expected_value in chromosomes:
            evaluator_cost, _ = evaluator(chromosome)
            self.assertEqual(expected_value, evaluator_cost)
Esempio n. 14
0
    def test_decoder_random_chromosome(self):
        filename = path.join('tests', 'data', 'test1.txt')
        stpg = ReaderORLibrary().parser(filename)

        evaluator = EvaluateKruskalBased(stpg)

        chromosome = '11110'
        vertices_from = evaluator.vertices_from_chromosome(chromosome)
        expected_vertices = set([1, 2, 3, 4, 5, 6])
        self.assertEqual(vertices_from, expected_vertices)

        coder = Coder(stpg)
        subgraph = coder.binary2treegraph(chromosome)

        for v, u in subgraph.gen_undirect_edges():
            self.assertTrue(stpg.graph.has_edge(v, u))

        self.assertFalse(subgraph.has_edge(1, 2))
        self.assertFalse(subgraph.has_edge(6, 4))

        self.assertTrue(subgraph.has_edge(1, 3))
        self.assertTrue(subgraph.has_edge(3, 2))
        self.assertTrue(subgraph.has_edge(5, 4))
        self.assertTrue(subgraph.has_edge(6, 5))
        self.assertTrue(subgraph.has_edge(2, 5))

        self.assertFalse(subgraph.has_node(7))
        #não existe mesmo
        self.assertFalse(subgraph.has_edge(7, 1))
        self.assertFalse(subgraph.has_edge(7, 5))
        self.assertFalse(subgraph.has_edge(3, 4))

        # não existe no subgrafo
        self.assertFalse(subgraph.has_edge(7, 2))
        self.assertFalse(subgraph.has_edge(7, 3))
        self.assertFalse(subgraph.has_edge(7, 4))
        self.assertFalse(subgraph.has_edge(7, 6))
Esempio n. 15
0
 def setUp(self) -> None:
     possibles = [ f'steinb{ii}.txt' for ii in range(10, 19)]
     filename = choice(possibles)
     print(filename)
     filename = path.join('datasets', 'ORLibrary', filename)
     self.stpg = ReaderORLibrary().parser(filename)
Esempio n. 16
0
 def setUp(self):
     filename = path.join('datasets', 'ORLibrary', 'steinb15.txt')
     self.stpg = ReaderORLibrary().parser(filename)
Esempio n. 17
0
heuristics = [{
    'function': prunning_mst,
    'nickname': "PMH"
}, {
    'function': shortest_path,
    'nickname': 'SPH'
}, {
    'function': shortest_path_origin_prim,
    'nickname': 'SPHPrim'
}, {
    'function': shortest_path_with_origin,
    'nickname': 'SPHO'
}]

reader = ReaderORLibrary()
results = list()
results.append(['instance_problem', 'heuristic', 'start_node', 'cost'])

for item in heuristics:
    heuristic = item['function']
    name_heuristic = item['nickname']

    for name in instances:
        STPG = reader.parser(path.join(instance_folder, name))
        graph = STPG.graph
        terminals = STPG.terminals.copy()
        vertices = list(graph.vertices)

        for v in vertices:
            print(