Esempio n. 1
0
def test_vxvyvz_to_galcencyl():
    X,Y,Z= 3.,4.,2.
    vx,vy,vz= 10.,-20.,30
    vgc= bovy_coords.vxvyvz_to_galcencyl(vx,vy,vz,X,Y,Z,vsun=[-5.,10.,5.])
    assert numpy.fabs(vgc[0]+17.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    assert numpy.fabs(vgc[1]-6.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    assert numpy.fabs(vgc[2]-35.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    #with galcen=True
    vgc= bovy_coords.vxvyvz_to_galcencyl(vx,vy,vz,5.,numpy.arctan(4./3.),Z,
                                         vsun=[-5.,10.,5.],galcen=True)
    assert numpy.fabs(vgc[0]+17.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    assert numpy.fabs(vgc[1]-6.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    assert numpy.fabs(vgc[2]-35.) < 10.**-10., 'vxvyvz_to_galcenrect conversion did not work as expected'
    return None
Esempio n. 2
0
    def UVW_to_galcen(self):
        """
        Converts UVW space vels to galactocentric frame
        Assumes R0=8 kpc, z0 = 0.025 kpc, vsun=[-11.1,30.24*8.,7.2] km/s
        Uses R, phi, z in kpc from RC catalog
        This matches JoBo's RC catalog assumptions

        # BUGS

        - galpy maipulates input GLON, GLAT
        - HACK: puts in back in degrees
        - EVENTUAL FIX: PR galpy with not mutating attribute
        # Output

        vRg, vTg, vZg  # km/s

        """
        self.vRvTvZ_g = bcoords.vxvyvz_to_galcencyl(self.spacevels[:, 0],
                                                    self.spacevels[:, 1],
                                                    self.spacevels[:, 2],
                                                    self.get_col('RC_GALR'),
                                                    self.get_col('RC_GALPHI'),
                                                    self.get_col('RC_GALZ'),
                                                    vsun=[-11.1, 30.24*8., 7.2],
                                                    galcen=True)
def obs_to_galcen(ra, dec, dist, pmra, pmdec, rv, ro=_R0, vo=_v0, zo=_z0):
    vxvv = np.dstack([ra, dec, dist, pmra, pmdec, rv])[0]
    ra, dec = vxvv[:, 0], vxvv[:, 1]
    lb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmra, pmdec = vxvv[:, 3], vxvv[:, 4]
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra, pmdec, ra, dec, degree=True)
    d, vlos = vxvv[:, 2], vxvv[:, 5]
    rectgal = bovy_coords.sphergal_to_rectgal(lb[:, 0], lb[:, 1], d, vlos, pmllpmbb[:, 0], pmllpmbb[:, 1], degree=True)
    vsolar = np.array([-11.1, 245.7, 7.25])
    vsun = vsolar / vo
    X = rectgal[:, 0] / ro
    Y = rectgal[:, 1] / ro
    Z = rectgal[:, 2] / ro
    vx = rectgal[:, 3] / vo
    vy = rectgal[:, 4] / vo
    vz = rectgal[:, 5] / vo
    XYZ = np.dstack([X, Y, Z])[0]
    vxyz = np.dstack([vx, vy, vz])[0]
    Rpz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Zsun=zo / ro)
    vRvTvz = bovy_coords.vxvyvz_to_galcencyl(vxyz[:, 0], vxyz[:, 1], vxyz[:, 2], Rpz[:, 0], Rpz[:, 1], Rpz[:, 2],
                                             vsun=vsun,
                                             Xsun=1.,
                                             Zsun=zo / ro,
                                             galcen=True)

    return XYZ, vxyz, Rpz, vRvTvz
Esempio n. 4
0
def test_coords():
    from galpy.util import bovy_coords
    ra, dec, dist = 161., 50., 8.5
    pmra, pmdec, vlos = -6.8, -10., -115.
    # Convert to Galactic and then to rect. Galactic
    ll, bb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmll, pmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra,
                                                   pmdec,
                                                   ra,
                                                   dec,
                                                   degree=True)
    X, Y, Z = bovy_coords.lbd_to_XYZ(ll, bb, dist, degree=True)
    vX, vY, vZ = bovy_coords.vrpmllpmbb_to_vxvyvz(vlos,
                                                  pmll,
                                                  pmbb,
                                                  X,
                                                  Y,
                                                  Z,
                                                  XYZ=True)
    # Convert to cylindrical Galactocentric
    # Assuming Sun's distance to GC is (8,0.025) in (R,z)
    R, phi, z = bovy_coords.XYZ_to_galcencyl(X, Y, Z, Xsun=8., Zsun=0.025)
    vR, vT, vz = bovy_coords.vxvyvz_to_galcencyl(vX,
                                                 vY,
                                                 vZ,
                                                 R,
                                                 phi,
                                                 Z,
                                                 vsun=[-10.1, 244., 6.7],
                                                 galcen=True)
    # 5/12/2016: test weakened, because improved galcen<->heliocen
    #            transformation has changed these, but still close
    print(R, phi, z, vR, vT, vz)
    assert numpy.fabs(R - 12.51328515156942
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(phi - 0.12177409073433249
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(z - 7.1241282354856228
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vR - 78.961682923035966
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vT + 241.49247772351964
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vz + 102.83965442188689
                      ) < 10.**-1., 'Coordinate transformation has changed'
    return None
def test_coords():
    from galpy.util import bovy_coords
    ra, dec, dist= 161., 50., 8.5
    pmra, pmdec, vlos= -6.8, -10., -115.
  # Convert to Galactic and then to rect. Galactic
    ll, bb= bovy_coords.radec_to_lb(ra,dec,degree=True)
    pmll, pmbb= bovy_coords.pmrapmdec_to_pmllpmbb(pmra,pmdec,ra,dec,degree=True)
    X,Y,Z= bovy_coords.lbd_to_XYZ(ll,bb,dist,degree=True)
    vX,vY,vZ= bovy_coords.vrpmllpmbb_to_vxvyvz(vlos,pmll,pmbb,X,Y,Z,XYZ=True)
    # Convert to cylindrical Galactocentric
    # Assuming Sun's distance to GC is (8,0.025) in (R,z)
    R,phi,z= bovy_coords.XYZ_to_galcencyl(X,Y,Z,Xsun=8.,Zsun=0.025)
    vR,vT,vz= bovy_coords.vxvyvz_to_galcencyl(vX,vY,vZ,R,phi,Z,vsun=[-10.1,244.,6.7],galcen=True)
    assert numpy.fabs(R-12.51328515156942) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(phi-0.12177409073433249) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(z-7.1241282354856228) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vR-78.961682923035966) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vT+241.49247772351964) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vz+102.83965442188689) < 10.**-4., 'Coordinate transformation has changed'
    return None
Esempio n. 6
0
def _add_proper_motions_gaia(data):
    from gaia_tools import xmatch
    gaia2_matches, matches_indx = xmatch.cds(data,
                                             colRA='RA',
                                             colDec='DEC',
                                             xcat='vizier:I/345/gaia2')
    # Add matches
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PLX', numpy.float),
                                               ('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PLX_ERR', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    data['PMMATCH'][matches_indx] = 1
    data['PLX'][matches_indx] = gaia2_matches['parallax']
    data['PMRA'][matches_indx] = gaia2_matches['pmra']
    data['PMDEC'][matches_indx] = gaia2_matches['pmdec']
    data['PLX_ERR'][matches_indx] = gaia2_matches['parallax_error']
    data['PMRA_ERR'][matches_indx] = gaia2_matches['pmra_error']
    data['PMDEC_ERR'][matches_indx] = gaia2_matches['pmdec_error']
    # Set values for those without match to -999
    pmindx = data['PMMATCH'] == 1
    data['PLX'][True ^ pmindx] = -9999.99
    data['PMRA'][True ^ pmindx] = -9999.99
    data['PMDEC'][True ^ pmindx] = -9999.99
    data['PLX_ERR'][True ^ pmindx] = -9999.99
    data['PMRA_ERR'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.0208,
        vsun=[-11.1, 30.24 * 8.15, 7.25]
    )  #Assumes proper motion of Sgr A* and R0=8.15 kpc, zo= 20.8 pc (Bennett & Bovy 2019)
    data['GALVR'] = vRvTvZ[:, 0]
    data['GALVT'] = vRvTvZ[:, 1]
    data['GALVZ'] = vRvTvZ[:, 2]
    data['GALVR'][True ^ pmindx] = -9999.99
    data['GALVT'][True ^ pmindx] = -9999.99
    data['GALVZ'][True ^ pmindx] = -9999.99
    return data
Esempio n. 7
0
    def __init__(self,vxvv=None,uvw=False,lb=False,
                 radec=False,vo=235.,ro=8.5,zo=0.025,
                 solarmotion='hogg'):
        """
        NAME:

           __init__

        PURPOSE:

           Initialize an Orbit instance

        INPUT:

           vxvv - initial conditions 
                  3D can be either

              1) in Galactocentric cylindrical coordinates [R,vR,vT(,z,vz,phi)]

              2) [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec)

              3) [ra,dec,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

              4) (l,b,d,mu_l, mu_b, vlos) in [deg,deg,kpc,mas/yr,mas/yr,km/s) (all J2000.0; mu_l = mu_l * cos b)

              5) [l,b,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

           4) and 5) also work when leaving out b and mu_b/W

        OPTIONAL INPUTS:

           radec - if True, input is 2) (or 3) above

           uvw - if True, velocities are UVW

           lb - if True, input is 4) or 5) above

           vo - circular velocity at ro

           ro - distance from vantage point to GC (kpc)

           zo - offset toward the NGP of the Sun wrt the plane (kpc)

           solarmotion - 'hogg' or 'dehnen', or 'schoenrich', or value in 
           [-U,V,W]

        OUTPUT:

           instance

        HISTORY:

           2010-07-20 - Written - Bovy (NYU)

        """
        if isinstance(solarmotion,str) and solarmotion.lower() == 'hogg':
            vsolar= nu.array([-10.1,4.0,6.7])/vo
        elif isinstance(solarmotion,str) and solarmotion.lower() == 'dehnen':
            vsolar= nu.array([-10.,5.25,7.17])/vo
        elif isinstance(solarmotion,str) \
                and solarmotion.lower() == 'schoenrich':
            vsolar= nu.array([-11.1,12.24,7.25])/vo
        else:
            vsolar= nu.array(solarmotion)/vo           
        if radec or lb:
            if radec:
                l,b= coords.radec_to_lb(vxvv[0],vxvv[1],degree=True)
            elif len(vxvv) == 4:
                l, b= vxvv[0], 0.
            else:
                l,b= vxvv[0],vxvv[1]
            if uvw:
                X,Y,Z= coords.lbd_to_XYZ(l,b,vxvv[2],degree=True)
                vx= vxvv[3]
                vy= vxvv[4]
                vz= vxvv[5]
            else:
                if radec:
                    pmll, pmbb= coords.pmrapmdec_to_pmllpmbb(vxvv[3],vxvv[4],
                                                             vxvv[0],vxvv[1],
                                                             degree=True)
                    d, vlos= vxvv[2], vxvv[5]
                elif len(vxvv) == 4:
                    pmll, pmbb= vxvv[2], 0.
                    d, vlos= vxvv[1], vxvv[3]
                else:
                    pmll, pmbb= vxvv[3], vxvv[4]
                    d, vlos= vxvv[2], vxvv[5]
                X,Y,Z,vx,vy,vz= coords.sphergal_to_rectgal(l,b,d,
                                                           vlos,pmll, pmbb,
                                                           degree=True)
            X/= ro
            Y/= ro
            Z/= ro
            vx/= vo
            vy/= vo
            vz/= vo
            vsun= nu.array([0.,1.,0.,])+vsolar
            R, phi, z= coords.XYZ_to_galcencyl(X,Y,Z,Zsun=zo/ro)
            vR, vT,vz= coords.vxvyvz_to_galcencyl(vx,vy,vz,
                                                  R,phi,z,
                                                  vsun=vsun,galcen=True)
            if lb and len(vxvv) == 4: vxvv= [R,vR,vT,phi]
            else: vxvv= [R,vR,vT,z,vz,phi]
        self.vxvv= vxvv
        if len(vxvv) == 2:
            self._orb= linearOrbit(vxvv=vxvv)
        elif len(vxvv) == 3:
            self._orb= planarROrbit(vxvv=vxvv)
        elif len(vxvv) == 4:
            self._orb= planarOrbit(vxvv=vxvv)
        elif len(vxvv) == 5:
            self._orb= RZOrbit(vxvv=vxvv)
        elif len(vxvv) == 6:
            self._orb= FullOrbit(vxvv=vxvv)
Esempio n. 8
0
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print "Saving to %s ..." % savefilename
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print "Making catalog of %i objects ..." % len(data)
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions
    from astroquery.vizier import Vizier
    import astroquery
    from astropy import units as u
    import astropy.coordinates as coord
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/322') #UCAC-4 catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                jj= 1
                while len(tab[0]['pmRA']) > 1 and jj < 4: 
                    trad= u.Quantity((4.-jj)/3600.,u.degree)
                    trying= True
                    while trying:
                        try:
                            tab= v.query_region(co,trad,catalog='I/322') #UCAC-4 catalog
                        except astroquery.exceptions.TimeoutError:
                            pass
                        else:
                            trying= False
                    jj+= 1
                if len(tab) == 0:
                    pmdata.PMMATCH[ii]= 0
                    print "Didn't find a unambiguous match for %i ..." % ii
                    continue               
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
            pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
            pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
            if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get proper motions
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/317') #PPMXL catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    pass
                    #print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                #Find nearest
                cosdists= numpy.zeros(len(tab[0]['pmRA']))
                for jj in range(len(tab[0]['pmRA'])):
                    cosdists[jj]= cos_sphere_dist(tab[0]['RAJ2000'][jj],
                                                  tab[0]['DEJ2000'][jj],
                                                  data['RA'][ii],
                                                  data['DEC'][ii])
                closest= numpy.argmax(cosdists)
                pmdata.PMRA[ii]= float(tab[0]['pmRA'][closest])
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'][closest])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'][closest])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'][closest])
                if numpy.isnan(float(tab[0]['pmRA'][closest])): pmdata.PMMATCH[ii]= 0
            else:
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
                if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
Esempio n. 9
0
    def __init__(self,
                 vxvv=None,
                 uvw=False,
                 lb=False,
                 radec=False,
                 vo=235.,
                 ro=8.5,
                 zo=0.025,
                 solarmotion='hogg'):
        """
        NAME:

           __init__

        PURPOSE:

           Initialize an Orbit instance

        INPUT:

           vxvv - initial conditions 
                  3D can be either

              1) in Galactocentric cylindrical coordinates [R,vR,vT(,z,vz,phi)]

              2) [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec)

              3) [ra,dec,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

              4) (l,b,d,mu_l, mu_b, vlos) in [deg,deg,kpc,mas/yr,mas/yr,km/s) (all J2000.0; mu_l = mu_l * cos b)

              5) [l,b,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

           4) and 5) also work when leaving out b and mu_b/W

        OPTIONAL INPUTS:

           radec - if True, input is 2) (or 3) above

           uvw - if True, velocities are UVW

           lb - if True, input is 4) or 5) above

           vo - circular velocity at ro

           ro - distance from vantage point to GC (kpc)

           zo - offset toward the NGP of the Sun wrt the plane (kpc)

           solarmotion - 'hogg' or 'dehnen', or 'schoenrich', or value in 
           [-U,V,W]

        OUTPUT:

           instance

        HISTORY:

           2010-07-20 - Written - Bovy (NYU)

        """
        if isinstance(solarmotion, str) and solarmotion.lower() == 'hogg':
            vsolar = nu.array([-10.1, 4.0, 6.7]) / vo
        elif isinstance(solarmotion, str) and solarmotion.lower() == 'dehnen':
            vsolar = nu.array([-10., 5.25, 7.17]) / vo
        elif isinstance(solarmotion,str) \
                and solarmotion.lower() == 'schoenrich':
            vsolar = nu.array([-11.1, 12.24, 7.25]) / vo
        else:
            vsolar = nu.array(solarmotion) / vo
        if radec or lb:
            if radec:
                l, b = coords.radec_to_lb(vxvv[0], vxvv[1], degree=True)
            elif len(vxvv) == 4:
                l, b = vxvv[0], 0.
            else:
                l, b = vxvv[0], vxvv[1]
            if uvw:
                X, Y, Z = coords.lbd_to_XYZ(l, b, vxvv[2], degree=True)
                vx = vxvv[3]
                vy = vxvv[4]
                vz = vxvv[5]
            else:
                if radec:
                    pmll, pmbb = coords.pmrapmdec_to_pmllpmbb(vxvv[3],
                                                              vxvv[4],
                                                              vxvv[0],
                                                              vxvv[1],
                                                              degree=True)
                    d, vlos = vxvv[2], vxvv[5]
                elif len(vxvv) == 4:
                    pmll, pmbb = vxvv[2], 0.
                    d, vlos = vxvv[1], vxvv[3]
                else:
                    pmll, pmbb = vxvv[3], vxvv[4]
                    d, vlos = vxvv[2], vxvv[5]
                X, Y, Z, vx, vy, vz = coords.sphergal_to_rectgal(l,
                                                                 b,
                                                                 d,
                                                                 vlos,
                                                                 pmll,
                                                                 pmbb,
                                                                 degree=True)
            X /= ro
            Y /= ro
            Z /= ro
            vx /= vo
            vy /= vo
            vz /= vo
            vsun = nu.array([
                0.,
                1.,
                0.,
            ]) + vsolar
            R, phi, z = coords.XYZ_to_galcencyl(X, Y, Z, Zsun=zo / ro)
            vR, vT, vz = coords.vxvyvz_to_galcencyl(vx,
                                                    vy,
                                                    vz,
                                                    R,
                                                    phi,
                                                    z,
                                                    vsun=vsun,
                                                    galcen=True)
            if lb and len(vxvv) == 4: vxvv = [R, vR, vT, phi]
            else: vxvv = [R, vR, vT, z, vz, phi]
        self.vxvv = vxvv
        if len(vxvv) == 2:
            self._orb = linearOrbit(vxvv=vxvv)
        elif len(vxvv) == 3:
            self._orb = planarROrbit(vxvv=vxvv)
        elif len(vxvv) == 4:
            self._orb = planarOrbit(vxvv=vxvv)
        elif len(vxvv) == 5:
            self._orb = RZOrbit(vxvv=vxvv)
        elif len(vxvv) == 6:
            self._orb = FullOrbit(vxvv=vxvv)
Esempio n. 10
0
def action(ra_deg, dec_deg, d_kpc, pm_ra_masyr, pm_dec_masyr, v_los_kms,
           verbose=False):
    """
    parameters:
    ----------
    ra_deg: (float)
        RA in degrees.
    dec_deg: (float)
        Dec in degress.
    d_kpc: (float)
        Distance in kpc.
    pm_ra_masyr: (float)
        RA proper motion in mas/yr.
    pm_decmasyr: (float)
        Dec proper motion in mas/yr.
    v_los_kms: (float)
        RV in kms.
    returns:
    ------
    R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms
    jR: (float)
        Radial action.
    lz: (float)
        Vertical ang mom.
    jz: (float)
        Vertical action.
    """
    ra_rad = ra_deg * (np.pi / 180.)  # RA [rad]
    dec_rad = dec_deg * (np.pi / 180.)  # dec [rad]

    # Galactocentric position of the Sun:
    X_gc_sun_kpc = 8.  # [kpc]
    Z_gc_sun_kpc = 0.025  # [kpc]

    # Galactocentric velocity of the Sun:
    vX_gc_sun_kms = -9.58  # = -U              [kms]
    vY_gc_sun_kms = 10.52 + 220.  # = V+v_circ(R_Sun) [kms]
    vZ_gc_sun_kms = 7.01  # = W               [kms]

    # a. convert spatial coordinates (ra,dec,d) to (R,z,phi)

    # (ra,dec) --> Galactic coordinates (l,b):
    lb = bovy_coords.radec_to_lb(ra_rad, dec_rad, degree=False, epoch=2000.0)
    # l_rad = lb[:, 0]
    # b_rad = lb[:, 1]
    l_rad = lb[0]
    b_rad = lb[1]

    # (l,b,d) --> Galactocentric cartesian coordinates (x,y,z):
    xyz = bovy_coords.lbd_to_XYZ(l_rad, b_rad, d_kpc, degree=False)
    # x_kpc = xyz[:, 0]
    # y_kpc = xyz[:, 1]
    # z_kpc = xyz[:, 2]
    x_kpc = xyz[0]
    y_kpc = xyz[1]
    z_kpc = xyz[2]

    # (x,y,z) --> Galactocentric cylindrical coordinates (R,z,phi):
    Rzphi = bovy_coords.XYZ_to_galcencyl(x_kpc, y_kpc, z_kpc,
                                         Xsun=X_gc_sun_kpc, Zsun=Z_gc_sun_kpc)
    # R_kpc = Rzphi[:, 0]
    # phi_rad = Rzphi[:, 1]
    # z_kpc = Rzphi[:, 2]
    R_kpc = Rzphi[0]
    phi_rad = Rzphi[1]
    z_kpc = Rzphi[2]

    # b. convert velocities (pm_ra,pm_dec,vlos) to (vR,vz,vT)

    # (pm_ra,pm_dec) --> (pm_l,pm_b):
    pmlpmb = bovy_coords.pmrapmdec_to_pmllpmbb(pm_ra_masyr, pm_dec_masyr,
                                               ra_rad, dec_rad, degree=False,
                                               epoch=2000.0)
    # pml_masyr = pmlpmb[:, 0]
    # pmb_masyr = pmlpmb[:, 1]
    pml_masyr = pmlpmb[0]
    pmb_masyr = pmlpmb[1]

    # (v_los,pm_l,pm_b) & (l,b,d) --> (vx,vy,vz):
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(v_los_kms, pml_masyr, pmb_masyr,
                                              l_rad, b_rad, d_kpc, XYZ=False,
                                              degree=False)
    # vx_kms = vxvyvz[:, 0]
    # vy_kms = vxvyvz[:, 1]
    # vz_kms = vxvyvz[:, 2]
    vx_kms = vxvyvz[0]
    vy_kms = vxvyvz[1]
    vz_kms = vxvyvz[2]

    # (vx,vy,vz) & (x,y,z) --> (vR,vT,vz):
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(vx_kms, vy_kms, vz_kms, R_kpc,
                                             phi_rad, z_kpc,
                                             vsun=[vX_gc_sun_kms,
                                                   vY_gc_sun_kms,
                                                   vZ_gc_sun_kms],
                                             galcen=True)
    # vR_kms = vRvTvZ[:, 0]
    # vT_kms = vRvTvZ[:, 1]
    # vz_kms = vRvTvZ[:, 2]
    vR_kms = vRvTvZ[0]
    vT_kms = vRvTvZ[1]
    vz_kms = vRvTvZ[2]

    if verbose:
        print("R = ", R_kpc, "\t kpc")
        print("phi = ", phi_rad, "\t rad")
        print("z = ", z_kpc, "\t kpc")
        print("v_R = ", vR_kms, "\t km/s")
        print("v_T = ", vT_kms, "\t km/s")
        print("v_z = ", vz_kms, "\t km/s")

    jR, lz, jz = calc_actions(R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms)

    return R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms, jR, lz, jz
Esempio n. 11
0
def calc_eccentricity(args, options):
    table = os.path.join(args[0],'table2.dat')
    readme = os.path.join(args[0],'ReadMe')
    dierickx = ascii.read(table, readme=readme)
    vxvv = np.dstack([dierickx['RAdeg'], dierickx['DEdeg'], dierickx['Dist']/1e3, dierickx['pmRA'], dierickx['pmDE'], dierickx['HRV']])[0]
    ro, vo, zo = 8., 220., 0.025
    ra, dec= vxvv[:,0], vxvv[:,1]
    lb= bovy_coords.radec_to_lb(ra,dec,degree=True)
    pmra, pmdec= vxvv[:,3], vxvv[:,4]
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(pmra,pmdec,ra,dec,degree=True)
    d, vlos= vxvv[:,2], vxvv[:,5]
    rectgal= bovy_coords.sphergal_to_rectgal(lb[:,0],lb[:,1],d,vlos,pmllpmbb[:,0], pmllpmbb[:,1],degree=True)
    vsolar= np.array([-10.1,4.0,6.7])
    vsun= np.array([0.,1.,0.,])+vsolar/vo
    X = rectgal[:,0]/ro
    Y = rectgal[:,1]/ro
    Z = rectgal[:,2]/ro
    vx = rectgal[:,3]/vo
    vy = rectgal[:,4]/vo
    vz = rectgal[:,5]/vo
    vsun= np.array([0.,1.,0.,])+vsolar/vo
    Rphiz= bovy_coords.XYZ_to_galcencyl(X,Y,Z,Zsun=zo/ro)
    vRvTvz= bovy_coords.vxvyvz_to_galcencyl(vx,vy,vz,Rphiz[:,0],Rphiz[:,1],Rphiz[:,2],vsun=vsun,Xsun=1.,Zsun=zo/ro,galcen=True)
    #do the integration and individual analytic estimate for each object
    ts= np.linspace(0.,20.,10000)
    lp= LogarithmicHaloPotential(normalize=1.)
    e_ana = numpy.zeros(len(vxvv))
    e_int = numpy.zeros(len(vxvv))
    print('Performing orbit integration and analytic parameter estimates for Dierickx et al. sample...')
    for i in tqdm(range(len(vxvv))):
        try:
            orbit = Orbit(vxvv[i], radec=True, vo=220., ro=8.)
            e_ana[i] = orbit.e(analytic=True, pot=lp, c=True)
        except UnboundError:
            e_ana[i] = np.nan
        orbit.integrate(ts, lp)
        e_int[i] = orbit.e(analytic=False)
    fig = plt.figure()
    fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
    plt.scatter(e_int, e_ana,  s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{galpy\ integrated}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ analytic}\ e$')
    plt.xlim(0.,1.)
    plt.ylim(0.,1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0],'dierickx-integratedeanalytice.png'), format='png', dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
    plt.hist(e_int, bins=30)
    plt.xlim(0.,1.)
    plt.xlabel(r'$\mathrm{galpy}\ e$')
    fig.tight_layout()
    plt.savefig(os.path.join(args[0], 'dierickx-integratedehist.png'), format='png', dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
    plt.scatter(dierickx['e'], e_int,  s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ integrated}\ e$')
    plt.xlim(0.,1.)
    plt.ylim(0.,1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0],'dierickx-integratedee.png'), format='png', dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5*columnwidth, 1.5*columnwidth)
    plt.scatter(dierickx['e'], e_ana,  s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ estimated}\ e$')
    plt.xlim(0.,1.)
    plt.ylim(0.,1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0],'dierickx-analyticee.png'), format='png', dpi=200)
    arr = numpy.recarray(len(e_ana), dtype=[('analytic_e', float), ('integrated_e', float)])
    arr['analytic_e'] = e_ana
    arr['integrated_e'] = e_int
    with open(os.path.join(args[0],'eccentricities.dat'), 'w') as file:
        pickle.dump(arr, file)
        file.close()
Esempio n. 12
0
def make_rcsample(parser):
    options, args = parser.parse_args()
    savefilename = options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename = os.path.join(
            appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data = esutil.numpy_util.remove_fields(data, [
        'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG',
        'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG',
        'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM',
        'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2',
        'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION',
        'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2',
        'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR',
        'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0',
        'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR',
        'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID',
        'SRC_H', 'PM_SRC'
    ])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data = esutil.numpy_util.remove_fields(data, ['ELEM'])
    #Select red-clump stars
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.255
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.34
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.256
    else:
        logg = data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data = data[indx]
    #Add more aggressive flag cut
    data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)])
    data['ADDL_LOGG_CUT'] = (
        (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG']
    if options.loggcut:
        data = data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST', float),
                                               ('RC_DM', float),
                                               ('RC_GALR', float),
                                               ('RC_GALPHI', float),
                                               ('RC_GALZ', float)])
    rcd = rcmodel.rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac
    data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST'],
                                 degree=True)
    R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=8.,
                                             Zsun=0.025)
    data['RC_GALR'] = R
    data['RC_GALPHI'] = phi
    data['RC_GALZ'] = Z
    #Save
    fitsio.write(savefilename, data, clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32),
                                                   ('TYC1', numpy.int32),
                                                   ('TYC2', numpy.int32),
                                                   ('TYC3', numpy.int32)])
        data['TYC2MATCH'] = 0
        data['TYC1'] = -1
        data['TYC2'] = -1
        data['TYC3'] = -1
        # Write positions
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           usecols=(1, 2, 7, 8, 9))
        iis = numpy.arange(len(data))
        mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai] = 1
        data['TYC1'][mai] = ma[:, 2]
        data['TYC2'][mai] = ma[:, 3]
        data['TYC3'][mai] = ma[:, 4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo = apogee.select.apogeeSelect()
        statIndx = apo.determine_statistical(data)
        mainIndx = apread.mainIndx(data)
        data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32),
                                                   ('INVSF', float)])
        data['STAT'] = 0
        data['STAT'][statIndx * mainIndx] = 1
        for ii in range(len(data)):
            if (statIndx * mainIndx)[ii]:
                data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii],
                                             data['H'][ii])
            else:
                data['INVSF'][ii] = -1.
    if options.nopm:
        fitsio.write(savefilename, data, clobber=True)
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 17, 18))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA'][m2] = pmdata['PMRA'][m1]
    data['PMDEC'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH'] == 1
    data['PMRA'][True - pmindx] = -9999.99
    data['PMDEC'][True - pmindx] = -9999.99
    data['PMRA_ERR'][True - pmindx] = -9999.99
    data['PMDEC_ERR'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR'] = vR
    data['GALVT'] = vT
    data['GALVZ'] = vZ
    data['GALVR'][True - pmindx] = -9999.99
    data['GALVT'][True - pmindx] = -9999.99
    data['GALVZ'][True - pmindx] = -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:PPMXL',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 19, 20))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data = esutil.numpy_util.add_fields(data,
                                        [('PMRA_PPMXL', numpy.float),
                                         ('PMDEC_PPMXL', numpy.float),
                                         ('PMRA_ERR_PPMXL', numpy.float),
                                         ('PMDEC_ERR_PPMXL', numpy.float),
                                         ('PMMATCH_PPMXL', numpy.int32)])
    data['PMMATCH_PPMXL'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA_PPMXL'][m2] = pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_PPMXL'][True - pmindx] = -9999.99
    data['PMRA_ERR_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_ERR_PPMXL'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR_PPMXL', numpy.float),
                                               ('GALVT_PPMXL', numpy.float),
                                               ('GALVZ_PPMXL', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                 data['PMDEC_PPMXL'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL'] = vR
    data['GALVT_PPMXL'] = vT
    data['GALVZ_PPMXL'] = vZ
    data['GALVR_PPMXL'][True - pmindx] = -9999.99
    data['GALVT_PPMXL'][True - pmindx] = -9999.99
    data['GALVZ_PPMXL'][True - pmindx] = -9999.99
    #Save
    fitsio.write(savefilename, data, clobber=True)
    return None
Esempio n. 13
0
def _add_proper_motions_pregaia(data, savefilename):
    #Get proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms.fits'
    if os.path.exists(pmfile):
        pmdata = fitsread(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 17, 18))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitswrite(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsread(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA'][m2] = pmdata['PMRA'][m1]
    data['PMDEC'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH'] == 1
    data['PMRA'][True ^ pmindx] = -9999.99
    data['PMDEC'][True ^ pmindx] = -9999.99
    data['PMRA_ERR'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR'] = vRvTvZ[:, 0]
    data['GALVT'] = vRvTvZ[:, 1]
    data['GALVZ'] = vRvTvZ[:, 2]
    data['GALVR'][True ^ pmindx] = -9999.99
    data['GALVT'][True ^ pmindx] = -9999.99
    data['GALVZ'][True ^ pmindx] = -9999.99
    #Get HSOY proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata = fitsread(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:I/339/hsoy',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               12: lambda s: float(s.strip() or -9999),
                               13: lambda s: float(s.strip() or -9999),
                               14: lambda s: float(s.strip() or -9999),
                               15: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(3, 4, 12, 13, 14, 15))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitswrite(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsread(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl/HSOY
    data = esutil.numpy_util.add_fields(data, [('PMRA_HSOY', numpy.float),
                                               ('PMDEC_HSOY', numpy.float),
                                               ('PMRA_ERR_HSOY', numpy.float),
                                               ('PMDEC_ERR_HSOY', numpy.float),
                                               ('PMMATCH_HSOY', numpy.int32)])
    data['PMMATCH_HSOY'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA_HSOY'][m2] = pmdata['PMRA'][m1]
    data['PMDEC_HSOY'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR_HSOY'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_HSOY'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_HSOY'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH_HSOY'] == 1
    data['PMRA_HSOY'][True ^ pmindx] = -9999.99
    data['PMDEC_HSOY'][True ^ pmindx] = -9999.99
    data['PMRA_ERR_HSOY'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR_HSOY'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR_HSOY', numpy.float),
                                               ('GALVT_HSOY', numpy.float),
                                               ('GALVZ_HSOY', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_HSOY'],
                                                 data['PMDEC_HSOY'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_HSOY'] = vRvTvZ[:, 0]
    data['GALVT_HSOY'] = vRvTvZ[:, 1]
    data['GALVZ_HSOY'] = vRvTvZ[:, 2]
    data['GALVR_HSOY'][True ^ pmindx] = -9999.99
    data['GALVT_HSOY'][True ^ pmindx] = -9999.99
    data['GALVZ_HSOY'][True ^ pmindx] = -9999.99
    #Return
    return data
    return None
Esempio n. 14
0
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_ALPHA',
                                           'RV_CARB',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'STABLERV_CHI2',
                                           'STABLERV_RCHI2',
                                           'STABLERV_CHI2_PROB',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'WASH_M',
                                           'WASH_M_ERR',
                                           'WASH_T2',
                                           'WASH_T2_ERR',
                                           'DDO51',
                                           'DDO51_ERR',
                                           'IRAC_3_6',
                                           'IRAC_3_6_ERR',
                                           'IRAC_4_5',
                                           'IRAC_4_5_ERR',
                                           'IRAC_5_8',
                                           'IRAC_5_8_ERR',
                                           'IRAC_8_0',
                                           'IRAC_8_0_ERR',
                                           'WISE_4_5',
                                           'WISE_4_5_ERR',
                                           'TARG_4_5',
                                           'TARG_4_5_ERR',
                                           'WASH_DDO51_GIANT_FLAG',
                                           'WASH_DDO51_STAR_FLAG',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg= data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data= esutil.numpy_util.add_fields(data,[('TYC2MATCH',numpy.int32),
                                                 ('TYC1',numpy.int32),
                                                 ('TYC2',numpy.int32),
                                                 ('TYC3',numpy.int32)])
        data['TYC2MATCH']= 0
        data['TYC1']= -1
        data['TYC2']= -1
        data['TYC3']= -1
        # Write positions
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=2',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:Tycho2',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          usecols=(1,2,7,8,9))
        iis= numpy.arange(len(data))
        mai= [iis[data['RA'] == ma[ii,0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai]= 1
        data['TYC1'][mai]= ma[:,2]
        data['TYC2'][mai]= ma[:,3]
        data['TYC3'][mai]= ma[:,4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:UCAC4',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,17,18))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:PPMXL',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,19,20))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
Esempio n. 15
0
def calc_actions(ra_deg, dec_deg, d_kpc, pm_ra_masyr, pm_dec_masyr, v_los_kms):
    ra_rad = ra_deg * (np.pi / 180.)  # RA [rad]
    dec_rad = dec_deg * (np.pi / 180.)  # dec [rad]

    # Galactocentric position of the Sun:
    X_gc_sun_kpc = 8.  # [kpc]
    Z_gc_sun_kpc = 0.025  # [kpc]

    # Galactocentric velocity of the Sun:
    vX_gc_sun_kms = -9.58  # = -U              [kms]
    vY_gc_sun_kms = 10.52 + 220.  # = V+v_circ(R_Sun) [kms]
    vZ_gc_sun_kms = 7.01  # = W               [kms]

    # a. convert spatial coordinates (ra,dec,d) to (R,z,phi)

    # (ra,dec) --> Galactic coordinates (l,b):
    lb = bovy_coords.radec_to_lb(ra_rad, dec_rad, degree=False, epoch=2000.0)
    l_rad = lb[:, 0]
    b_rad = lb[:, 1]

    # (l,b,d) --> Galactocentric cartesian coordinates (x,y,z):
    xyz = bovy_coords.lbd_to_XYZ(l_rad, b_rad, d_kpc, degree=False)
    x_kpc = xyz[:, 0]
    y_kpc = xyz[:, 1]
    z_kpc = xyz[:, 2]

    # (x,y,z) --> Galactocentric cylindrical coordinates (R,z,phi):
    Rzphi = bovy_coords.XYZ_to_galcencyl(x_kpc,
                                         y_kpc,
                                         z_kpc,
                                         Xsun=X_gc_sun_kpc,
                                         Zsun=Z_gc_sun_kpc)
    R_kpc = Rzphi[:, 0]
    phi_rad = Rzphi[:, 1]
    z_kpc = Rzphi[:, 2]

    # b. convert velocities (pm_ra,pm_dec,vlos) to (vR,vz,vT)

    # (pm_ra,pm_dec) --> (pm_l,pm_b):
    pmlpmb = bovy_coords.pmrapmdec_to_pmllpmbb(pm_ra_masyr,
                                               pm_dec_masyr,
                                               ra_rad,
                                               dec_rad,
                                               degree=False,
                                               epoch=2000.0)
    pml_masyr = pmlpmb[:, 0]
    pmb_masyr = pmlpmb[:, 1]

    # (v_los,pm_l,pm_b) & (l,b,d) --> (vx,vy,vz):
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(v_los_kms,
                                              pml_masyr,
                                              pmb_masyr,
                                              l_rad,
                                              b_rad,
                                              d_kpc,
                                              XYZ=False,
                                              degree=False)
    vx_kms = vxvyvz[:, 0]
    vy_kms = vxvyvz[:, 1]
    vz_kms = vxvyvz[:, 2]

    # (vx,vy,vz) & (x,y,z) --> (vR,vT,vz):
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vx_kms,
        vy_kms,
        vz_kms,
        R_kpc,
        phi_rad,
        z_kpc,
        vsun=[vX_gc_sun_kms, vY_gc_sun_kms, vZ_gc_sun_kms],
        galcen=True)
    vR_kms = vRvTvZ[:, 0]
    vT_kms = vRvTvZ[:, 1]
    vz_kms = vRvTvZ[:, 2]

    print("R = ", R_kpc, "\t kpc")
    print("phi = ", phi_rad, "\t rad")
    print("z = ", z_kpc, "\t kpc")
    print("v_R = ", vR_kms, "\t km/s")
    print("v_T = ", vT_kms, "\t km/s")
    print("v_z = ", vz_kms, "\t km/s")
    return vz_kms
def obs_to_galcen(ra,
                  dec,
                  dist,
                  pmra,
                  pmdec,
                  rv,
                  pmra_err,
                  pmdec_err,
                  pmra_pmdec_corr,
                  dist_err,
                  rv_err,
                  return_cov=True,
                  verbose=True,
                  return_rphiz=True,
                  ro=8.,
                  vo=220.,
                  zo=0.025,
                  parallax=False):
    vxvv = np.dstack([ra, dec, dist, pmra, pmdec, rv])[0]
    ra, dec = vxvv[:, 0], vxvv[:, 1]
    lb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmra, pmdec = vxvv[:, 3], vxvv[:, 4]
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra,
                                                 pmdec,
                                                 ra,
                                                 dec,
                                                 degree=True)
    d, vlos = vxvv[:, 2], vxvv[:, 5]
    if parallax:
        d = 1. / d
    rectgal = bovy_coords.sphergal_to_rectgal(lb[:, 0],
                                              lb[:, 1],
                                              d,
                                              vlos,
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              degree=True)
    vsolar = np.array([-10.1, 4.0, 6.7])
    vsun = np.array([
        0.,
        1.,
        0.,
    ]) + vsolar / vo
    X = rectgal[:, 0] / ro
    Y = rectgal[:, 1] / ro
    Z = rectgal[:, 2] / ro
    vx = rectgal[:, 3] / vo
    vy = rectgal[:, 4] / vo
    vz = rectgal[:, 5] / vo
    XYZ = np.dstack([X, Y, Z])[0]
    vxyz = np.dstack([vx, vy, vz])[0]
    if return_rphiz:
        Rpz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                           XYZ[:, 1],
                                           XYZ[:, 2],
                                           Zsun=zo / ro)
        vRvTvz = bovy_coords.vxvyvz_to_galcencyl(vxyz[:, 0],
                                                 vxyz[:, 1],
                                                 vxyz[:, 2],
                                                 Rpz[:, 0],
                                                 Rpz[:, 1],
                                                 Rpz[:, 2],
                                                 vsun=vsun,
                                                 Xsun=1.,
                                                 Zsun=zo / ro,
                                                 galcen=True)
    if return_cov == True:
        cov_pmradec = np.empty([len(pmra_err), 2, 2])
        cov_pmradec[:, 0, 0] = pmra_err**2
        cov_pmradec[:, 1, 1] = pmdec_err**2
        cov_pmradec[:, 0, 1] = pmra_pmdec_corr * pmra_err * pmdec_err
        cov_pmradec[:, 1, 0] = pmra_pmdec_corr * pmra_err * pmdec_err
        if verbose:
            print('propagating covariance in pmra pmdec -> pmll pmbb')
        cov_pmllbb = bovy_coords.cov_pmrapmdec_to_pmllpmbb(cov_pmradec,
                                                           vxvv[:, 0],
                                                           vxvv[:, 1],
                                                           degree=True,
                                                           epoch='J2015')
        if verbose:
            print('propagating covariance in pmll pmbb -> vx vy vz')
        cov_vxyz = bovy_coords.cov_dvrpmllbb_to_vxyz(vxvv[:, 2], dist_err,
                                                     rv_err, pmllpmbb[:, 0],
                                                     pmllpmbb[:,
                                                              1], cov_pmllbb,
                                                     lb[:, 0], lb[:, 1])
        if not return_rphiz:
            return XYZ, vxyz, cov_vxyz

        if verbose:
            print('propagating covariance in vx vy vz -> vR vT vz')
        cov_galcencyl = bovy_coords.cov_vxyz_to_galcencyl(cov_vxyz,
                                                          Rpz[:, 1],
                                                          Xsun=1.,
                                                          Zsun=zo / ro)
        return XYZ, vxyz, cov_vxyz, Rpz, vRvTvz, cov_galcencyl
    if not return_rphiz:
        return XYZ, vxyz
    return XYZ, vxyz, Rpz, vRvTvz
def dat_to_galcen(
        dat,
        return_cov=True,
        return_rphiz=True,
        verbose=False,
        ro=8.,
        vo=220.,
        zo=0.025,
        keys=['ra', 'dec', 'BPG_meandist', 'pmra', 'pmdec', 'VHELIO_AVG'],
        cov_keys=[
            'pmra_error', 'pmdec_error', 'pmra_pmdec_corr', 'BPG_diststd',
            'VERR'
        ],
        parallax=False):
    vxvv = np.dstack([dat[keys[i]] for i in range(len(keys))])[0]
    ra, dec = vxvv[:, 0], vxvv[:, 1]
    lb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmra, pmdec = vxvv[:, 3], vxvv[:, 4]
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra,
                                                 pmdec,
                                                 ra,
                                                 dec,
                                                 degree=True)
    d, vlos = vxvv[:, 2], vxvv[:, 5]
    if parallax:
        d = 1. / d
    rectgal = bovy_coords.sphergal_to_rectgal(lb[:, 0],
                                              lb[:, 1],
                                              d,
                                              vlos,
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              degree=True)
    vsolar = np.array([-11.1, 245.6,
                       7.25])  #use SBD10 vR and vZ and SGR proper motion vT
    vsun = np.array([
        0.,
        0.,
        0.,
    ]) + vsolar / vo
    X = rectgal[:, 0] / ro
    Y = rectgal[:, 1] / ro
    Z = rectgal[:, 2] / ro
    vx = rectgal[:, 3] / vo
    vy = rectgal[:, 4] / vo
    vz = rectgal[:, 5] / vo
    XYZ = np.dstack([X, Y, Z])[0]
    vxyz = np.dstack([vx, vy, vz])[0]
    if return_rphiz:
        Rpz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                           XYZ[:, 1],
                                           XYZ[:, 2],
                                           Zsun=zo / ro)
        vRvTvz = bovy_coords.vxvyvz_to_galcencyl(vxyz[:, 0],
                                                 vxyz[:, 1],
                                                 vxyz[:, 2],
                                                 Rpz[:, 0],
                                                 Rpz[:, 1],
                                                 Rpz[:, 2],
                                                 vsun=vsun,
                                                 Xsun=1.,
                                                 Zsun=zo / ro,
                                                 galcen=True)
    if return_cov == True:
        cov_pmradec = np.array([[[
            dat[cov_keys[0]][i]**2,
            dat[cov_keys[2]][i] * dat[cov_keys[0]][i] * dat[cov_keys[1]][i]
        ],
                                 [
                                     dat[cov_keys[2]][i] *
                                     dat[cov_keys[0]][i] * dat[cov_keys[1]][i],
                                     dat[cov_keys[1]][i]**2
                                 ]] for i in range(len(dat))])
        if verbose:
            print('propagating covariance in pmra pmdec -> pmll pmbb')
        cov_pmllbb = bovy_coords.cov_pmrapmdec_to_pmllpmbb(cov_pmradec,
                                                           vxvv[:, 0],
                                                           vxvv[:, 1],
                                                           degree=True,
                                                           epoch='J2015')
        if verbose:
            print('propagating covariance in pmll pmbb -> vx vy vz')
        cov_vxyz = bovy_coords.cov_dvrpmllbb_to_vxyz(vxvv[:,
                                                          2], dat[cov_keys[3]],
                                                     dat[cov_keys[4]],
                                                     pmllpmbb[:,
                                                              0], pmllpmbb[:,
                                                                           1],
                                                     cov_pmllbb, lb[:,
                                                                    0], lb[:,
                                                                           1])
        if not return_rphiz:
            return XYZ, vxyz, cov_vxyz

        if verbose:
            print('propagating covariance in vx vy vz -> vR vT vz')
        cov_galcencyl = bovy_coords.cov_vxyz_to_galcencyl(cov_vxyz,
                                                          Rpz[:, 1],
                                                          Xsun=1.,
                                                          Zsun=zo / ro)
        return XYZ, vxyz, cov_vxyz, Rpz, vRvTvz, cov_galcencyl
    if not return_rphiz:
        return XYZ, vxyz
    return XYZ, vxyz, Rpz, vRvTvz
def calc_eccentricity(args, options):
    table = os.path.join(args[0], 'table2.dat')
    readme = os.path.join(args[0], 'ReadMe')
    dierickx = ascii.read(table, readme=readme)
    vxvv = np.dstack([
        dierickx['RAdeg'], dierickx['DEdeg'], dierickx['Dist'] / 1e3,
        dierickx['pmRA'], dierickx['pmDE'], dierickx['HRV']
    ])[0]
    ro, vo, zo = 8., 220., 0.025
    ra, dec = vxvv[:, 0], vxvv[:, 1]
    lb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmra, pmdec = vxvv[:, 3], vxvv[:, 4]
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra,
                                                 pmdec,
                                                 ra,
                                                 dec,
                                                 degree=True)
    d, vlos = vxvv[:, 2], vxvv[:, 5]
    rectgal = bovy_coords.sphergal_to_rectgal(lb[:, 0],
                                              lb[:, 1],
                                              d,
                                              vlos,
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              degree=True)
    vsolar = np.array([-10.1, 4.0, 6.7])
    vsun = np.array([
        0.,
        1.,
        0.,
    ]) + vsolar / vo
    X = rectgal[:, 0] / ro
    Y = rectgal[:, 1] / ro
    Z = rectgal[:, 2] / ro
    vx = rectgal[:, 3] / vo
    vy = rectgal[:, 4] / vo
    vz = rectgal[:, 5] / vo
    vsun = np.array([
        0.,
        1.,
        0.,
    ]) + vsolar / vo
    Rphiz = bovy_coords.XYZ_to_galcencyl(X, Y, Z, Zsun=zo / ro)
    vRvTvz = bovy_coords.vxvyvz_to_galcencyl(vx,
                                             vy,
                                             vz,
                                             Rphiz[:, 0],
                                             Rphiz[:, 1],
                                             Rphiz[:, 2],
                                             vsun=vsun,
                                             Xsun=1.,
                                             Zsun=zo / ro,
                                             galcen=True)
    #do the integration and individual analytic estimate for each object
    ts = np.linspace(0., 20., 10000)
    lp = LogarithmicHaloPotential(normalize=1.)
    e_ana = numpy.zeros(len(vxvv))
    e_int = numpy.zeros(len(vxvv))
    print(
        'Performing orbit integration and analytic parameter estimates for Dierickx et al. sample...'
    )
    for i in tqdm(range(len(vxvv))):
        try:
            orbit = Orbit(vxvv[i], radec=True, vo=220., ro=8.)
            e_ana[i] = orbit.e(analytic=True, pot=lp, c=True)
        except UnboundError:
            e_ana[i] = np.nan
        orbit.integrate(ts, lp)
        e_int[i] = orbit.e(analytic=False)
    fig = plt.figure()
    fig.set_size_inches(1.5 * columnwidth, 1.5 * columnwidth)
    plt.scatter(e_int, e_ana, s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{galpy\ integrated}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ analytic}\ e$')
    plt.xlim(0., 1.)
    plt.ylim(0., 1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0], 'dierickx-integratedeanalytice.png'),
                format='png',
                dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5 * columnwidth, 1.5 * columnwidth)
    plt.hist(e_int, bins=30)
    plt.xlim(0., 1.)
    plt.xlabel(r'$\mathrm{galpy}\ e$')
    fig.tight_layout()
    plt.savefig(os.path.join(args[0], 'dierickx-integratedehist.png'),
                format='png',
                dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5 * columnwidth, 1.5 * columnwidth)
    plt.scatter(dierickx['e'], e_int, s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ integrated}\ e$')
    plt.xlim(0., 1.)
    plt.ylim(0., 1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0], 'dierickx-integratedee.png'),
                format='png',
                dpi=200)
    fig = plt.figure()
    fig.set_size_inches(1.5 * columnwidth, 1.5 * columnwidth)
    plt.scatter(dierickx['e'], e_ana, s=1, color='Black', lw=0.)
    plt.xlabel(r'$\mathrm{Dierickx\ et\ al.}\ e$')
    plt.ylabel(r'$\mathrm{galpy\ estimated}\ e$')
    plt.xlim(0., 1.)
    plt.ylim(0., 1.)
    fig.tight_layout()
    plt.savefig(os.path.join(args[0], 'dierickx-analyticee.png'),
                format='png',
                dpi=200)
    arr = numpy.recarray(len(e_ana),
                         dtype=[('analytic_e', float),
                                ('integrated_e', float)])
    arr['analytic_e'] = e_ana
    arr['integrated_e'] = e_int
    with open(os.path.join(args[0], 'eccentricities.dat'), 'w') as file:
        pickle.dump(arr, file)
        file.close()