Esempio n. 1
0
def test_choose_optimal_move():
    '''(5 points) choose_optimal_move()'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game 

    p=MCTSPlayer()
    #-------------------------
    s=np.array([[ 1,-1, 1],
                [ 0, 0,-1],
                [ 0, 1,-1]])
    n = MCNode(s, x=1)
    n.build_tree(g,100)
    r,c=p.choose_optimal_move(n)
    assert r == 2
    assert c == 0

    #-------------------------
    s=np.array([[ 1,-1, 1],
                [ 0, 1,-1],
                [ 0, 1,-1]])
    n = MCNode(s, x=-1)
    n.build_tree(g,100)
    r,c=p.choose_optimal_move(n)
    assert r == 2
    assert c == 0

    #-------------------------
    s=np.array([[ 1,-1, 1],
                [ 0, 0, 0],
                [ 0, 0, 0]])
    n = MCNode(s, x=-1)
    n.build_tree(g,200)
    r,c=p.choose_optimal_move(n)
    assert r == 1
    assert c == 1

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello 
    g = Othello()  # game 
    s=np.array([[ 0,-1, 1,-1, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0],
                [ 0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MCNode(s, x=1) # it's X player's turn
    n.build_tree(g,100)
    assert np.allclose(s,s_)
    r,c=p.choose_optimal_move(n)
    assert r == 0
    assert c == 0
Esempio n. 2
0
def A3C_train(shared_model: nn.Module, optimizer, counter, n):
    model = Net(n)
    model.train()

    env = Othello(n)
    env.play((4, 6))
    state = env.data

    max_episode_count = 10000

    while counter.value < max_episode_count:
        model.load_state_dict(shared_model.state_dict())

        history = []  # (state, action, reward)
        done = False
        episode_length = 0
        while not done and episode_length < n * n:
            action = model.sample_action(
                torch.from_numpy(state.astype(np.float32)).unsqueeze(0))
            next_state, reward, done = env.step(action)

            history.append((state, action, reward))
            state = next_state

        states, actions, rewards = zip(*history)
        return_ = reward_to_return(rewards, 0.95, 0)

        policy_logit, value = model(torch.Tensor(states))
        td = torch.Tensor(return_) - value.squeeze(1)
        policy_dist = [
            logits_to_dist(pl)
            for pl in policy_logit.view(policy_logit.size(0), -1)
        ]

        advantage = td.detach()
        value_loss = td.pow(2).mean()
        policy_loss = (torch.cat([
            -pd.log_prob(torch.from_numpy(np.where(a.flatten())[0]))
            for pd, a in zip(policy_dist, actions)
        ]) * advantage).sum()
        loss = value_loss + policy_loss
        optimizer.zero_grad()
        loss.backward()

        # shared_modelの勾配として設定
        for param, shared_param in zip(model.parameters(),
                                       shared_model.parameters()):
            if shared_param.grad is not None:
                break
            shared_param._grad = param.grad

        optimizer.step()

        # 終了条件を満たす場合、初期化
        if done:
            with counter.get_lock():
                counter.value += 1
            episode_length = 0
            env = Othello(n)
            state = env.data
Esempio n. 3
0
class ReversiEnv(object):
    """docstring for ReversiEnv."""
    def __init__(self):
        super(ReversiEnv, self).__init__()
        self.n = 8

    def length(self):
        return self.n * self.n

    def reset(self):
        self.game = Othello()
        return self.game.get_state(), self.game.get_turn()

    def action_space(self):
        return self.game.get_actions()

    def step(self, action):
        self.game.move(action)
        reward = self.game.get_winner()
        return self.game.get_state(), self.game.get_turn(), reward
Esempio n. 4
0
def test_choose_a_move():
    '''(5 points) random choose_a_move()'''

    # Game: TicTacToe
    g = TicTacToe()  # game
    p = RandomPlayer()
    s = np.array([[0, 1, 1], [1, 0, -1], [1, 1, 0]])

    s_ = np.array([[0, 1, 1], [1, 0, -1], [1, 1, 0]])
    count = np.zeros(3)
    for _ in range(100):
        r, c = p.choose_a_move(g, s, x=1)
        assert s[r, c] == 0  # player needs to choose a valid move
        assert np.allclose(
            s, s_)  # the player should never change the game state object
        assert r == c  # in this example the valid moves are on the diagonal of the matrix
        assert r > -1 and r < 3
        count[c] += 1
    assert count[
        0] > 20  # the random player should give roughly equal chance to each valid move
    assert count[1] > 20
    assert count[2] > 20

    s = np.array([[1, 1, 0], [1, 0, -1], [0, 1, 1]])

    for _ in range(100):
        r, c = p.choose_a_move(g, s, x=1)
        assert s[r, c] == 0
        assert r == 2 - c
        assert r > -1 and r < 3

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":
    g = Othello()  # game
    s = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -1, -1, -1, 0, 0],
                  [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    p = RandomPlayer()
    s_ = s.copy()
    count = np.zeros(5)
    for _ in range(200):
        r, c = p.choose_a_move(g, s, x=1)
        assert np.allclose(
            s, s_)  # the player should never change the game state object
        assert s[r, c] == 0  # player needs to choose a valid move
        assert r == 2
        assert c > 1 and c < 7
        count[c - 2] += 1
    assert count[
        0] > 20  # the random player should give roughly equal chance to each valid move
    assert count[1] > 20
    assert count[2] > 20
    assert count[3] > 20
    assert count[4] > 20

    # test whether we can run a game using random player
    s = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    for i in range(10):
        e = g.run_a_game(p, p, s=s, x=1)
        assert e == -1

    s = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    w = 0
    for i in range(10):
        e = g.run_a_game(p, p, s=s, x=1)
        w += e
    assert np.abs(w) < 9
Esempio n. 5
0
players = 0
size = 8
gui = True
verbose = True

if players == 2:
    player1 = Player()
    player2 = Player()
elif players == 1:
    player1 = Player()
    player2 = AI(greedy_move, 'Greedy AI')
else:
    player1 = AI(greedy_move, 'Greedy AI')
    player2 = AI(Negamax(4, score=EdgeScore(size)), 'Negamax AI')

game = Othello(player1, player2, size, verbose)

if gui:
    size = 500
    margin = 50
    GUI(game, size, margin).mainloop()
elif players == 0:
    games = 100
    results = {player1: 0, player2: 0, GridGame.DRAW: 0}

    for i in range(games):
        game.play()
        results[game.winner] += 1
        game.reset()

    print(results)
Esempio n. 6
0
def run_a_game(p):
    '''
        Run a game
        Input:
            p: the AI player that you are playing with 
    '''

    # initialize game state
    g = Othello()
    win = init_screen()

    # initialize the game state
    s = g.initial_game_state()
    x = 1 # current turn (x player's turn)
    # draw empty board
    draw_empty_board(win,g,s,x)

    canPlay = True
    pygame.display.update()

    # run the game
    while True:
        event = pygame.event.wait()
        # close the window 
        if event.type == pygame.QUIT:
            pygame.quit()
            sys.exit()
        
        # Press Key 
        if event.type == pygame.KEYDOWN:
            # press F button (restart game)
            if event.key == pygame.K_f:
                s = g.initial_game_state()
                x=1 # X player's turn
                draw_empty_board(win,g,s,x)
                canPlay = True
                pygame.display.update()
            # press ESC button (exit game)
            if event.key == pygame.K_ESCAPE:
                pygame.quit()
                sys.exit()
    
        # Click Mouse
        if event.type is pygame.MOUSEBUTTONDOWN and canPlay and x==1:
            # Human player's turn to choose a move
            # get mouse position
            (mouseX, mouseY) = pygame.mouse.get_pos()
            # convert to board grid (row,column)
            r, c = map_mouse_to_board(mouseX, mouseY)
            # if the move is valid 
            if g.check_valid_move(s,r,c,x):
                # update game state
                x=g.apply_a_move(s,r,c,x)
                # draw the board
                draw_board(win,g,s,x)
                # check if the game has ended already
                e = g.check_game(s) 
                if e is not None:
                    draw_result(win,e)
                    canPlay = False
                e=pygame.event.Event(pygame.USEREVENT)
                pygame.event.post(e)
                print("X player chooses:",str(r),str(c))

        if event.type == pygame.USEREVENT and x== -1 and canPlay: # computer's turn to choose a move
            r,c = p.choose_a_move(g,s,x)
            # if the move is valid 
            assert g.check_valid_move(s,r,c,x)
            # update game state
            x=g.apply_a_move(s,r,c,x)
            # draw the board
            draw_board(win,g,s,x)
            # check if the game has ended already
            e = g.check_game(s) 
            if e is not None:
                draw_result(win,e)
                canPlay = False
            e=pygame.event.Event(pygame.USEREVENT)
            pygame.event.post(e)
            print("O player chooses:",str(r),str(c))
    
        # update the UI display
        pygame.display.update()
Esempio n. 7
0
def main():
    mcts = MCTS()
    game = Othello()

    for i in range(32):
        action = mcts.get_action(game)
        game.move(action)

        if game.game_over():
            break

        actions = game.get_actions()
        probs = np.ones(actions.shape[0])
        action = sample(probs, actions)
        game.move(action)
        if game.game_over():
            break

        # input('waiting')

    print(game.get_true_state())
    print(game.get_score())
    print(game.get_winner())

    print('game over')
Esempio n. 8
0
def test_choose_optimal_move():
    '''(5 points) choose_optimal_move()'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game
    p = MiniMaxPlayer()

    #-------------------------
    b = np.array([[1, -1, 1], [0, 0, -1], [0, 1, -1]])
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    n.compute_v(g)
    r, c = p.choose_optimal_move(n)
    assert r == 2
    assert c == 0

    #-------------------------
    b = np.array([[1, -1, 1], [0, 1, -1], [0, 1, -1]])
    s = GameState(b, x=-1)  # it's O player's turn
    n = MMNode(s)
    n.build_tree(g)
    n.compute_v(g)
    r, c = p.choose_optimal_move(n)
    assert r == 2
    assert c == 0

    #-------------------------
    b = np.array([[1, -1, 1], [0, 0, 0], [0, 0, 0]])
    s = GameState(b, x=-1)  # it's O player's turn
    n = MMNode(s)
    n.build_tree(g)
    n.compute_v(g)
    r, c = p.choose_optimal_move(n)
    assert r == 1
    assert c == 1

    #-------------------------
    b = np.array([[1, -1, 1], [0, 1, -1], [-1, 1, -1]])
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    n.compute_v(g)
    r, c = p.choose_optimal_move(n)
    assert r == 1
    assert c == 0

    # The AI agent should also be compatible with Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    n.compute_v(g)
    assert np.allclose(n.s.b, b_)
    r, c = p.choose_optimal_move(n)
    assert r == 0
    assert c == 0
Esempio n. 9
0
def test_compute_v():
    '''(5 points) compute_v()'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    #-------------------------
    # the value of a terminal node is its game result
    s = np.array([[1, 0, 0], [0, 1, -1], [0, -1, 1]])
    n = MMNode(s, x=-1)
    n.compute_v(g)
    assert n.v == 1  # X player won the game

    # the value of a terminal node is its game result
    s = np.array([[1, 1, -1], [-1, 1, 1], [1, -1, -1]])
    n = MMNode(s, x=-1)
    n.compute_v(g)
    assert n.v == 0  # A tie

    # the value of a terminal node is its game result
    s = np.array([[1, 0, 1], [0, 0, 1], [-1, -1, -1]])
    n = MMNode(s, x=1)
    n.compute_v(g)
    assert n.v == -1  # O player won the game

    #-------------------------
    # if it is X player's turn, the value of the current node is the max value of all its children nodes.

    s = np.array([[0, -1, 1], [0, 1, -1], [0, -1, 1]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    # the current node has 3 children nodes, two of which are terminal nodes (X player wins)
    n.compute_v(g)
    # so the max value among the three children nodes max(1,?,1) = 1 (here ? is either 1 or 0 or -1)
    assert n.v == 1  # X player won the game

    #-------------------------
    # if it is O player's turn, the value of the current node is the min value of all its children nodes.

    s = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    n = MMNode(s, x=-1)
    n.build_tree(g)
    # the current node has 2 children nodes, one of them is a terminal node (O player wins)
    n.compute_v(g)
    # so the min value among the two children nodes min(-1,0) =-1
    assert n.v == -1  # O player won the game

    #-------------------------
    # a tie after one move
    s = np.array([[-1, 1, -1], [-1, 1, 1], [0, -1, 1]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 0

    #-------------------------
    # optimal moves lead to: O player wins
    s = np.array([[-1, 1, -1], [1, 0, 0], [1, 0, 0]])
    n = MMNode(s, x=-1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == -1

    #-------------------------
    # optimal moves lead to a tie
    s = np.array([[0, 1, 0], [0, 1, 0], [0, 0, -1]])
    n = MMNode(s, x=-1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 0

    #-------------------------
    # optimal moves lead to: X player wins
    s = np.array([[1, -1, 1], [0, 0, 0], [0, -1, 0]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [0, 0, 0], [0, 0, -1]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [0, 0, -1], [0, 0, 0]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [-1, 0, 0], [0, 0, 0]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [0, 0, 0], [-1, 0, 0]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [0, 0, 1], [0, 0, -1]])
    n = MMNode(s, x=-1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == -1

    s = np.array([[1, -1, 1], [0, 0, -1], [0, 1, -1]])
    n = MMNode(s, x=1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[1, -1, 1], [0, 0, 0], [0, 1, -1]])
    n = MMNode(s, x=-1)
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 0

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    s = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)
    n.compute_v(g)
    assert np.allclose(s, s_)
    assert n.v == 1

    s = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == -1

    s = np.array([[0, 0, -1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    n = MMNode(s, x=-1)  # it's O player's turn
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == -1
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1

    s = np.array([[0, -1, 1, -1, 1, -1, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0],
                  [1, 0, 0, 0, 0, 0, 0, 0], [-1, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)
    n.compute_v(g)
    assert n.v == 1
Esempio n. 10
0
def test_expand():
    '''(5 points) expand'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # Current Node (root)
    b = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    s = GameState(b, x=1)  #it's X player's turn
    n = MCNode(s)
    # expand
    sc = n.expand(g)
    assert n.s.x == 1
    assert len(n.c) == 3

    assert type(sc) == MCNode
    assert sc.p == n
    assert sc.s.x == -1
    assert sc.p == n
    assert sc.c == []
    assert sc.v == 0
    assert sc.N == 0

    b_ = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert c.s.x == -1
        assert c.p == n
        assert c.c == []
        assert c.v == 0
        assert c.N == 0

    # child node A
    b = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
    assert c

    # child node B
    b = np.array([[0, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node C
    b = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
    assert c

    # the selected child node should be in the children list
    c = False
    for x in n.c:
        if sc == x:
            c = True
    assert c

    #--------------------------

    # Current Node (root)
    b = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    s = GameState(b, x=-1)  #it's O player's turn
    n = MCNode(s)
    sc = n.expand(g)
    assert n.s.x == -1
    assert len(n.c) == 2
    assert type(sc) == MCNode
    assert sc.p == n
    assert sc.s.x == 1
    assert sc.p == n
    assert sc.c == []
    assert sc.v == 0
    assert sc.N == 0

    for c in n.c:
        assert c.s.x == 1
        assert c.p == n
        assert c.c == []
        assert c.v == 0
        assert c.N == 0

    # child node A
    b = np.array([[1, 1, -1], [-1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node B
    b = np.array([[1, 1, -1], [0, -1, 1], [-1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
    assert c

    # the selected child node should be in the children list
    c = False
    for x in n.c:
        if sc == x:
            c = True
    assert c

    #---------------------------
    s = GameState(np.zeros((3, 3)), x=1)
    n = MCNode(s)
    sc = n.expand(g)
    assert n.s.x == 1
    assert len(n.c) == 9
    a = False
    for c in n.c:
        assert c.s.x == -1
        assert c.p == n
        assert c.c == []
        assert np.sum(c.s.b) == 1
        assert c.v == 0
        assert c.N == 0
        if sc == c:
            a = True
    assert a  # the selected child node should be in the children list

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=1)  #it's X player's turn
    n = MCNode(s)
    # expand
    n.expand(g)
    assert len(n.c) == 2
    assert n.s.x == 1
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MCNode
        assert c.p == n
        assert c.c == []
        assert c.v == 0

    # child node A
    b = np.array([[1, 1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.s.x == 1  # it is still X player's turn because there is no valid move for O player
    assert c

    # child node B
    b = np.array([[0, -1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 4)
            assert x.s.x == -1
    assert c

    #---------------------
    b = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=-1)  #it's O player's turn
    n = MCNode(s)
    # expand
    n.expand(g)
    print(n.c)
    assert len(n.c) == 3
    assert n.s.x == -1
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MCNode
        assert c.p == n
        assert c.c == []
        assert c.v == 0

    # child node A
    b = np.array([[-1, -1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.s.x == -1  # no valid move for X player
    assert c

    # child node B
    b = np.array([[0, 1, -1, -1, -1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 4)
            assert x.s.x == 1
    assert c

    # child node C
    b = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0],
                  [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 2)
            assert x.s.x == 1
    assert c
Esempio n. 11
0
 def reset(self):
     self.game = Othello()
     return self.game.get_state(), self.game.get_turn()
Esempio n. 12
0
def test_build_tree():
    '''(5 points) build_tree'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # current node (root node)
    b = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    b_ = b.copy()
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(b, b_)
    assert len(n.c) == 3
    assert n.s.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.s.x == -1
        assert c.p == n
        assert len(c.c) == 2
        assert c.v == None

    #-----------------------
    # child node A
    b = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            ca = x
    assert c

    # child node B
    b = np.array([[0, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
            cb = x
    assert c

    # child node C
    b = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
            cc = x
    assert c

    #-----------------------
    # Child Node A's children
    for c in ca.c:
        assert c.s.x == 1
        assert c.p == ca
        assert c.v == None

    # grand child node A1
    b = np.array([[1, 1, -1], [-1, -1, 1], [0, 1, -1]])
    c = False
    for x in ca.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
            assert len(x.c) == 1
            #-----------------------
            # Great Grand Child Node A11
            assert x.c[0].s.x == -1
            assert x.c[0].p == x
            assert x.c[0].v == None
            assert x.c[0].c == []
    assert c

    # grand child node A2
    b = np.array([[1, 1, -1], [0, -1, 1], [-1, 1, -1]])
    c = False
    for x in ca.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
            assert x.c == []
    assert c

    #-----------------------
    # Child Node B's children
    for c in cb.c:
        assert c.s.x == 1
        assert c.p == cb
        assert c.c == []
        assert c.v == None

    # grand child node B1
    b = np.array([[-1, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in cb.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
    assert c

    # grand child node B2
    b = np.array([[0, 1, -1], [1, -1, 1], [-1, 1, -1]])
    c = False
    for x in cb.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
    assert c

    #-----------------------
    # Child Node C's children
    for c in cc.c:
        assert c.s.x == 1
        assert c.p == cc
        assert c.v == None

    # grand child node C1
    b = np.array([[-1, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in cc.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.c == []
    assert c

    # grand child node C2
    b = np.array([[0, 1, -1], [-1, -1, 1], [1, 1, -1]])
    c = False
    for x in cc.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
            assert len(x.c) == 1
            # Great Grand Child Node C21
            assert x.c[0].s.x == -1
            assert x.c[0].p == x
            assert x.c[0].v == None
            assert x.c[0].c == []
    assert c

    #-----------------------
    b = np.array([[0, 0, 1], [0, 1, 1], [-1, 0, -1]])
    s = GameState(b, x=-1)  #it's O player's turn
    n = MMNode(s)
    n.build_tree(g)

    assert len(n.c) == 4
    assert n.s.x == -1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    b1 = np.array([[-1, 0, 1], [0, 1, 1], [-1, 0, -1]])
    b2 = np.array([[0, -1, 1], [0, 1, 1], [-1, 0, -1]])
    b3 = np.array([[0, 0, 1], [-1, 1, 1], [-1, 0, -1]])
    b4 = np.array([[0, 0, 1], [0, 1, 1], [-1, -1, -1]])

    for c in n.c:
        assert c.s.x == 1
        assert c.v == None
        assert c.p == n
        if np.allclose(c.s.b, b1):
            assert c.m == (0, 0)
            assert len(c.c) == 3
        if np.allclose(c.s.b, b2):
            assert c.m == (0, 1)
            assert len(c.c) == 3
        if np.allclose(c.s.b, b3):
            assert c.m == (1, 0)
            assert len(c.c) == 3
        if np.allclose(c.s.b, b4):
            assert c.m == (2, 1)
            assert c.c == []  #terminal node, no child

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    b = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(n.s.b, b_)
    assert len(n.c) == 2
    assert n.s.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    for c in n.c:
        assert type(c) == MMNode
        assert c.s.x == -1
        assert c.p == n
        assert c.v == None
        assert len(c.c) == 1
    #-----------------------
    # child node A
    b = np.array([[0, 0, -1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 5)
            ca = x
    assert c

    #-----------------------
    # child node B
    b = np.array([[0, 1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 1)
            cb = x
    assert c

    #-----------------------
    # Child Node A's children
    # grand child node A1
    assert ca.c[0].p == ca
    assert ca.c[0].v == None
    assert ca.c[0].m == (0, 6)
    assert ca.c[0].c == []
    b = np.array([[0, 0, -1, -1, -1, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(ca.c[0].s.b, b)

    #-----------------------
    # Child Node B's children
    # grand child node B1
    assert cb.c[0].p == cb
    assert cb.c[0].v == None
    assert cb.c[0].m == (0, 0)
    assert cb.c[0].c == []
    b = np.array([[-1, -1, -1, -1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(cb.c[0].s.b, b)

    #------------------------------------
    b = np.array([[0, -1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=1)  # it's X player's turn
    n = MMNode(s)
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(n.s.b, b_)
    assert len(n.c) == 2
    assert n.s.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.v == None
        assert len(c.c) == 1
    #-----------------------
    # child node A
    b = np.array([[1, 1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.s.x == 1  # there is no valid move for O player, so O player needs to give up the chance
            ca = x
    assert c

    #-----------------------
    # child node B
    b = np.array([[0, -1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 5)
            assert x.s.x == -1
            cb = x
    assert c

    #-----------------------
    # Child Node A's children
    # grand child node A1
    assert ca.c[0].p == ca
    assert ca.c[0].v == None
    assert ca.c[0].m == (0, 5)
    assert ca.c[0].c == []
    b = np.array([[1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(ca.c[0].s.b, b)

    #-----------------------
    # Child Node B's children
    # grand child node B1
    assert cb.c[0].p == cb
    assert cb.c[0].v == None
    assert cb.c[0].m == (0, 6)
    assert cb.c[0].c == []
    b = np.array([[0, -1, -1, -1, -1, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(cb.c[0].s.b, b)

    #---------------------
    # The AI agent should also be compatible with the game: GO
    # now let's test on the game "GO":
    g = GO(board_size=2)  # game (2 x 2 board)
    b = np.array([[1, 1], [1, 0]])
    s = GO_state(b, x=1, a=1)  #it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    assert len(n.c) == 1
    assert n.c[0].s.x == -1
    assert n.c[0].s.a == 2
    assert len(n.c[0].c) == 0

    l = np.array([[0, 0], [0, -1]])
    p = {np.array2string(l)}
    s = GO_state(b, x=-1, p=p, a=1)  #it's O player's turn
    n = MMNode(s)
    n.build_tree(g)
    assert len(n.c) == 1
    assert n.c[0].s.x == 1
    assert n.c[0].s.a == 2
    assert len(n.c[0].c) == 0

    g = GO(board_size=2, max_game_length=1)  # game (2 x 2 board)
    b = np.array([[1, 1], [1, 0]])
    s = GO_state(b, x=-1)  #it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    assert len(n.c) == 2
    assert n.c[0].s.x == 1
    assert len(n.c[0].c) == 0

    g = GO(board_size=2, max_game_length=2)  # game (2 x 2 board)
    b = np.array([[1, 1], [1, 0]])
    s = GO_state(b, x=-1)  #it's X player's turn
    n = MMNode(s)
    n.build_tree(g)
    assert len(n.c) == 2
    for c in n.c:
        assert c.s.x == 1
        if np.allclose(c.s.b, b):
            assert len(c.c) == 1
        else:
            assert len(c.c) == 4
Esempio n. 13
0
def test_expand():
    '''(5 points) expand'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # Current Node (root)
    b = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    s = GameState(b, x=1)  #it's X player's turn
    n = MMNode(s)
    # expand
    n.expand(g)
    assert len(n.c) == 3
    assert n.s.x == 1
    b_ = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.s.x == -1
        assert c.p == n
        assert c.c == [
        ]  #only add one level of children nodes, not two levels.
        assert c.v == None

    # child node A
    b = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
    assert c

    # child node B
    b = np.array([[0, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node C
    b = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
    assert c

    #--------------------------

    # Current Node (root)
    b = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    s = GameState(b, x=-1)  #it's O player's turn
    n = MMNode(s)
    n.expand(g)
    assert n.s.x == -1
    assert len(n.c) == 2
    for c in n.c:
        assert c.s.x == 1
        assert c.p == n
        assert c.c == []

    # child node A
    b = np.array([[1, 1, -1], [-1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node B
    b = np.array([[1, 1, -1], [0, -1, 1], [-1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 0)
    assert c

    #---------------------------
    s = GameState(np.zeros((3, 3)), x=1)  #it's X player's turn
    n = MMNode(s)
    n.expand(g)
    assert n.s.x == 1
    assert len(n.c) == 9
    for c in n.c:
        assert c.s.x == -1
        assert c.p == n
        assert c.c == []
        assert np.sum(c.s.b) == 1
        assert c.v == None

    #---------------------
    # The AI agent should also be compatible with Othello game.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=1)  #it's X player's turn
    n = MMNode(s)
    # expand
    n.expand(g)
    assert len(n.c) == 2
    assert n.s.x == 1
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.c == []
        assert c.v == None

    # child node A
    b = np.array([[1, 1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.s.x == 1  # it is still X player's turn because there is no valid move for O player
    assert c

    # child node B
    b = np.array([[0, -1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 4)
            assert x.s.x == -1
    assert c

    #---------------------
    b = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    s = GameState(b, x=-1)  #it's O player's turn
    n = MMNode(s)
    # expand
    n.expand(g)
    print(n.c)
    assert len(n.c) == 3
    assert n.s.x == -1
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.c == []
        assert c.v == None

    # child node A
    b = np.array([[-1, -1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 0)
            assert x.s.x == -1  # no valid move for X player
    assert c

    # child node B
    b = np.array([[0, 1, -1, -1, -1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (0, 4)
            assert x.s.x == 1
    assert c

    # child node C
    b = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0],
                  [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s.b, b):
            c = True
            assert x.m == (2, 2)
            assert x.s.x == 1
    assert c

    #---------------------
    # The AI agent should also be compatible with the game: GO
    # now let's test on the game "GO":
    g = GO(board_size=2)  # game (2 x 2 board)
    b = np.array([[0, 1], [1, 0]])
    b_ = b.copy()
    s = GO_state(b, x=-1)  #it's O player's turn
    n = MMNode(s)
    # expand
    n.expand(g)
    assert len(n.c) == 1  # only one valid move for O player: 'pass'
    assert n.s.x == -1
    # the current game state should not change after expanding
    assert np.allclose(n.s.b, b_)
    c = n.c[0]
    assert type(c) == MMNode
    assert c.p == n
    assert c.c == []
    assert c.v == None
    assert np.allclose(c.s.b, b_)
    assert c.m[0] is None
    assert c.m[1] is None

    s = GO_state(b, x=1)  #it's X player's turn
    n = MMNode(s)
    # expand
    n.expand(g)
    assert len(n.c) == 3
Esempio n. 14
0
def test_choose_a_move():
    '''(5 points) random choose_a_move()'''

    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game
    p = RandomPlayer()
    b = np.array([[0, 1, 1], [1, 0, -1], [1, 1, 0]])

    b_ = np.array([[0, 1, 1], [1, 0, -1], [1, 1, 0]])
    s = GameState(b, x=1)
    count = np.zeros(3)
    for _ in range(100):
        r, c = p.choose_a_move(g, s)
        assert b_[r, c] == 0  # player needs to choose a valid move
        assert np.allclose(
            s.b, b_)  # the player should never change the game state object
        assert r == c  # in this example the valid moves are on the diagonal of the matrix
        assert r > -1 and r < 3
        count[c] += 1
    assert count[
        0] > 20  # the random player should give roughly equal chance to each valid move
    assert count[1] > 20
    assert count[2] > 20

    b = np.array([[1, 1, 0], [1, 0, -1], [0, 1, 1]])

    s = GameState(b, x=1)
    for _ in range(100):
        r, c = p.choose_a_move(g, s)
        assert b[r, c] == 0
        assert r == 2 - c
        assert r > -1 and r < 3

    #---------------------
    # The AI agent should also be compatible with the game Othello.
    # now let's test on the game "Othello":
    g = Othello()  # game
    b = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -1, -1, -1, 0, 0],
                  [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    b_ = b.copy()
    p = RandomPlayer()
    s = GameState(b, x=1)
    count = np.zeros(5)
    for _ in range(200):
        r, c = p.choose_a_move(g, s)
        assert np.allclose(
            b, b_)  # the player should never change the game state object
        assert b[r, c] == 0  # player needs to choose a valid move
        assert r == 2
        assert c > 1 and c < 7
        count[c - 2] += 1
    assert count[
        0] > 20  # the random player should give roughly equal chance to each valid move
    assert count[1] > 20
    assert count[2] > 20
    assert count[3] > 20
    assert count[4] > 20

    # test whether we can run a game using random player
    b = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s = GameState(b, x=1)
    for i in range(10):
        e = g.run_a_game(p, p, s=s)
        assert e == -1

    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s = GameState(b, x=1)
    w = 0
    for i in range(10):
        e = g.run_a_game(p, p, s=s)
        w += e
    assert np.abs(w) < 9

    # test whether we can run a game using random player
    b = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s = GameState(b, x=1)
    for i in range(10):
        e = g.run_a_game(p, p, s=s)
        assert e == -1

    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    w = 0
    s = GameState(b, x=1)
    for i in range(10):
        e = g.run_a_game(p, p, s=s)
        w += e
    assert np.abs(w) < 9

    #---------------------
    # The AI agent should also be compatible with the game: GO
    # now let's test on the game "GO":
    g = GO(board_size=2)  # game (2 x 2 board)
    s = g.initial_game_state()
    p = RandomPlayer()

    b_ = s.b.copy()
    count = np.zeros(5)
    for _ in range(200):
        r, c = p.choose_a_move(g, s)
        assert np.allclose(
            s.b, b_)  # the player should never change the game state object
        assert s.a == 0
        if r is None and c is None:  # the player choose to pass without placing any stone in the step
            count[-1] += 1
        else:
            count[2 * r + c] += 1
    assert count[
        0] > 20  # the random player should give roughly equal chance to each valid move
    assert count[1] > 20
    assert count[2] > 20
    assert count[3] > 20
    assert count[4] > 20
Esempio n. 15
0
def test_expand():
    '''(5 points) expand'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # Current Node (root)
    s = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    n = MMNode(s, x=1)  #it's X player's turn
    # expand
    n.expand(g)
    assert len(n.c) == 3
    assert n.x == 1
    s_ = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    # the current game state should not change after expanding
    assert np.allclose(n.s, s_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.x == -1
        assert c.p == n
        assert c.c == [
        ]  #only add one level of children nodes, not two levels.
        assert c.v == None

    # child node A
    s = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
    assert c

    # child node B
    s = np.array([[0, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node C
    s = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 0)
    assert c

    #--------------------------

    # Current Node (root)
    s = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    n = MMNode(s, -1)  #it's O player's turn
    n.expand(g)
    assert n.x == -1
    assert len(n.c) == 2
    for c in n.c:
        assert c.x == 1
        assert c.p == n
        assert c.c == []

    # child node A
    s = np.array([[1, 1, -1], [-1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (1, 0)
    assert c

    # child node B
    s = np.array([[1, 1, -1], [0, -1, 1], [-1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 0)
    assert c

    #---------------------------
    n = MMNode(np.zeros((3, 3)), 1)
    n.expand(g)
    assert n.x == 1
    assert len(n.c) == 9
    for c in n.c:
        assert c.x == -1
        assert c.p == n
        assert c.c == []
        assert np.sum(c.s) == 1
        assert c.v == None

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    s = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MMNode(s, x=1)  #it's X player's turn
    # expand
    n.expand(g)
    assert len(n.c) == 2
    assert n.x == 1
    # the current game state should not change after expanding
    assert np.allclose(n.s, s_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.c == []
        assert c.v == None

    # child node A
    s = np.array([[1, 1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
            assert x.x == 1  # it is still X player's turn because there is no valid move for O player
    assert c

    # child node B
    s = np.array([[0, -1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 4)
            assert x.x == -1
    assert c

    #---------------------
    s = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MMNode(s, x=-1)  #it's O player's turn
    # expand
    n.expand(g)
    print(n.c)
    assert len(n.c) == 3
    assert n.x == -1
    # the current game state should not change after expanding
    assert np.allclose(n.s, s_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.c == []
        assert c.v == None

    # child node A
    s = np.array([[-1, -1, -1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
            assert x.x == -1  # no valid move for X player
    assert c

    # child node B
    s = np.array([[0, 1, -1, -1, -1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 4)
            assert x.x == 1
    assert c

    # child node C
    s = np.array([[0, 1, -1, 1, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0],
                  [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 2)
            assert x.x == 1
    assert c
Esempio n. 16
0
def test_build_tree():
    '''(5 points) build_tree'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # current node (root node)
    s = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
    s_ = s.copy()
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(s, s_)
    assert len(n.c) == 3
    assert n.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    assert np.allclose(n.s, s_)
    for c in n.c:
        assert type(c) == MMNode
        assert c.x == -1
        assert c.p == n
        assert len(c.c) == 2
        assert c.v == None

    #-----------------------
    # child node A
    s = np.array([[1, 1, -1], [0, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
            ca = x
    assert c

    # child node B
    s = np.array([[0, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (1, 0)
            cb = x
    assert c

    # child node C
    s = np.array([[0, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 0)
            cc = x
    assert c

    #-----------------------
    # Child Node A's children
    for c in ca.c:
        assert c.x == 1
        assert c.p == ca
        assert c.v == None

    # grand child node A1
    s = np.array([[1, 1, -1], [-1, -1, 1], [0, 1, -1]])
    c = False
    for x in ca.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (1, 0)
            assert len(x.c) == 1
            #-----------------------
            # Great Grand Child Node A11
            assert x.c[0].x == -1
            assert x.c[0].p == x
            assert x.c[0].v == None
            assert x.c[0].c == []
    assert c

    # grand child node A2
    s = np.array([[1, 1, -1], [0, -1, 1], [-1, 1, -1]])
    c = False
    for x in ca.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 0)
            assert x.c == []
    assert c

    #-----------------------
    # Child Node B's children
    for c in cb.c:
        assert c.x == 1
        assert c.p == cb
        assert c.c == []
        assert c.v == None

    # grand child node B1
    s = np.array([[-1, 1, -1], [1, -1, 1], [0, 1, -1]])
    c = False
    for x in cb.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
    assert c

    # grand child node B2
    s = np.array([[0, 1, -1], [1, -1, 1], [-1, 1, -1]])
    c = False
    for x in cb.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (2, 0)
    assert c

    #-----------------------
    # Child Node C's children
    for c in cc.c:
        assert c.x == 1
        assert c.p == cc
        assert c.v == None

    # grand child node C1
    s = np.array([[-1, 1, -1], [0, -1, 1], [1, 1, -1]])
    c = False
    for x in cc.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
            assert x.c == []
    assert c

    # grand child node C2
    s = np.array([[0, 1, -1], [-1, -1, 1], [1, 1, -1]])
    c = False
    for x in cc.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (1, 0)
            assert len(x.c) == 1
            # Great Grand Child Node C21
            assert x.c[0].x == -1
            assert x.c[0].p == x
            assert x.c[0].v == None
            assert x.c[0].c == []
    assert c

    #-----------------------
    s = np.array([[0, 0, 1], [0, 1, 1], [-1, 0, -1]])
    n = MMNode(s, x=-1)  #it's O player's turn
    n.build_tree(g)

    assert len(n.c) == 4
    assert n.x == -1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    s1 = np.array([[-1, 0, 1], [0, 1, 1], [-1, 0, -1]])
    s2 = np.array([[0, -1, 1], [0, 1, 1], [-1, 0, -1]])
    s3 = np.array([[0, 0, 1], [-1, 1, 1], [-1, 0, -1]])
    s4 = np.array([[0, 0, 1], [0, 1, 1], [-1, -1, -1]])

    for c in n.c:
        assert c.x == 1
        assert c.v == None
        assert c.p == n
        if np.allclose(c.s, s1):
            assert c.m == (0, 0)
            assert len(c.c) == 3
        if np.allclose(c.s, s2):
            assert c.m == (0, 1)
            assert len(c.c) == 3
        if np.allclose(c.s, s3):
            assert c.m == (1, 0)
            assert len(c.c) == 3
        if np.allclose(c.s, s4):
            assert c.m == (2, 1)
            assert c.c == []  #terminal node, no child

    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    s = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(s, s_)
    assert len(n.c) == 2
    assert n.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    for c in n.c:
        assert type(c) == MMNode
        assert c.x == -1
        assert c.p == n
        assert c.v == None
        assert len(c.c) == 1
    #-----------------------
    # child node A
    s = np.array([[0, 0, -1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 5)
            ca = x
    assert c

    #-----------------------
    # child node B
    s = np.array([[0, 1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 1)
            cb = x
    assert c

    #-----------------------
    # Child Node A's children
    # grand child node A1
    assert ca.c[0].p == ca
    assert ca.c[0].v == None
    assert ca.c[0].m == (0, 6)
    assert ca.c[0].c == []
    s = np.array([[0, 0, -1, -1, -1, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(ca.c[0].s, s)

    #-----------------------
    # Child Node B's children
    # grand child node B1
    assert cb.c[0].p == cb
    assert cb.c[0].v == None
    assert cb.c[0].m == (0, 0)
    assert cb.c[0].c == []
    s = np.array([[-1, -1, -1, -1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(cb.c[0].s, s)

    #------------------------------------
    s = np.array([[0, -1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s_ = s.copy()
    n = MMNode(s, x=1)  # it's X player's turn
    n.build_tree(g)

    # the current game state should not change after building the tree
    assert np.allclose(s, s_)
    assert len(n.c) == 2
    assert n.x == 1
    assert n.v == None
    assert n.p == None
    assert n.m == None

    for c in n.c:
        assert type(c) == MMNode
        assert c.p == n
        assert c.v == None
        assert len(c.c) == 1
    #-----------------------
    # child node A
    s = np.array([[1, 1, 1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 0)
            assert x.x == 1  # there is no valid move for O player, so O player needs to give up the chance
            ca = x
    assert c

    #-----------------------
    # child node B
    s = np.array([[0, -1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    c = False
    for x in n.c:
        if np.allclose(x.s, s):
            c = True
            assert x.m == (0, 5)
            assert x.x == -1
            cb = x
    assert c

    #-----------------------
    # Child Node A's children
    # grand child node A1
    assert ca.c[0].p == ca
    assert ca.c[0].v == None
    assert ca.c[0].m == (0, 5)
    assert ca.c[0].c == []
    s = np.array([[1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(ca.c[0].s, s)

    #-----------------------
    # Child Node B's children
    # grand child node B1
    assert cb.c[0].p == cb
    assert cb.c[0].v == None
    assert cb.c[0].m == (0, 6)
    assert cb.c[0].c == []
    s = np.array([[0, -1, -1, -1, -1, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    assert np.allclose(cb.c[0].s, s)
Esempio n. 17
0
def test_sample():
    '''(5 points) sample'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    #------------------------
    b = np.array([[0, 1, 1], [0, -1, 1], [-1, 1, -1]])
    bc = np.array([[0, 1, 1], [0, -1, 1], [-1, 1, -1]])
    s = GameState(b, x=-1)  # "O" player's turn
    n = MCNode(s)
    assert np.allclose(n.s.b,
                       bc)  # the game state should not change after simulation
    v = 0
    for _ in range(100):
        e = n.sample(g)
        assert e == -1 or e == 1
        v += e
    assert np.abs(
        v) < 25  # the two results should have roughly the same chance

    #------------------------
    b = np.array([[0, 1, 1], [-1, -1, 1], [-1, 1, -1]])
    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    for _ in range(100):
        e = n.sample(g)
        assert e == 1

    #------------------------
    b = np.array([[0, 1, 0], [-1, -1, 1], [-1, 1, 1]])
    s = GameState(b, x=-1)  # "O" player's turn
    n = MCNode(s)
    for _ in range(100):
        e = n.sample(g)
        assert e == -1

    #------------------------
    b = np.array([[0, 1, 1], [0, -1, 1], [0, -1, -1]])

    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    v = 0
    for _ in range(100):
        e = n.sample(g)
        assert e == -1 or e == 1
        v += e
    assert np.abs(v) < 25  # X player has 1/2 chance to win and 1/2 to lose

    #------------------------
    # Terminal node, the game has already ended, the simulation result should always be the same.
    b = np.array([[-1, 0, 0], [1, -1, 1], [0, 1,
                                           -1]])  # terminal node: O player won
    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    for _ in range(100):
        assert n.sample(g) == -1

    b_ = np.array([[-1, 0, 0], [1, -1, 1], [0, 1, -1]])
    assert np.allclose(n.s.b,
                       b_)  # the game state should not change after simulation

    b = np.array([[-1, -1, 1], [1, 1, -1], [-1, 1, 1]])
    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    for _ in range(100):
        assert n.sample(g) == 0

    #------------------------
    b = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]])
    s = GameState(b, x=-1)  # "O" player's turn
    n = MCNode(s)
    v = 0
    for _ in range(1000):
        e = n.sample(g)
        assert e == -1 or e == 1 or e == 0
        v += e
    assert np.abs(v - 500) < 100

    #-----------------------------
    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game

    #------------------------
    b = np.array([[0, 0, -1, 1, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    for _ in range(10):
        e = n.sample(g)
        assert e == -1

    #------------------------
    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    s = GameState(b, x=1)  # "X" player's turn
    n = MCNode(s)
    w = 0
    for _ in range(10):
        e = n.sample(g)
        w += e
    assert np.abs(
        w
    ) < 9  # the two results (1 and -1) should roughly have the same chance
Esempio n. 18
0
def test_minmax_choose_a_move():
    '''(10 points) minmax choose_a_move()'''

    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    # two possible moves: one leads to win
    p = MiniMaxPlayer()
    s = np.array([[0, -1, 1], [-1, 1, 1], [0, 1, -1]])
    s_ = s.copy()
    r, c = p.choose_a_move(g, s, x=1)
    assert np.allclose(s, s_)
    assert r == 2
    assert c == 0

    # three possible moves, one leads to win
    p = MiniMaxPlayer()
    s = np.array([[1, -1, 1], [0, 0, -1], [0, 1, -1]])

    r, c = p.choose_a_move(g, s, x=1)
    assert r == 2
    assert c == 0

    #-------------------------
    p = MiniMaxPlayer()
    s = np.array([[1, -1, 1], [0, 0, 0], [0, 0, 0]])
    r, c = p.choose_a_move(g, s, x=-1)  # O player's turn
    assert r == 1
    assert c == 1

    #-------------------------
    # play against random player in the game
    p1 = MiniMaxPlayer()
    p2 = RandomPlayer()

    # X Player: MinMax
    # O Player: Random
    s = np.array([[1, -1, 1], [0, 0, 0], [0, 0, -1]])
    for i in range(10):
        e = g.run_a_game(p1, p2, s=s, x=1)
        assert e == 1

    #-------------------------
    # play against MinMax player in the game

    # X Player: MinMax
    # O Player: MinMax
    s = np.array([[1, -1, 1], [0, 0, -1], [0, 1, -1]])
    for i in range(10):
        e = g.run_a_game(p1, p1, s=s, x=1)
        assert e == 1

    s = np.array([[0, 0, 1], [0, -1, 0], [1, -1, 0]])
    e = g.run_a_game(p1, p1, s=s)
    assert e == 0

    s = np.array([[0, 0, 0], [0, -1, 0], [1, 0, 0]])
    e = g.run_a_game(p1, p1, s=s)
    assert e == 0

    s = np.array([[0, 0, 0], [0, 0, 0], [1, -1, 0]])
    e = g.run_a_game(p1, p1, s=s)
    assert e == 1

    s = np.array([[0, 0, 0], [0, 1, 0], [0, -1, 0]])
    e = g.run_a_game(p1, p1, s)
    assert e == 1

    s = np.array([[0, 0, 0], [0, 1, 0], [-1, 0, 0]])
    e = g.run_a_game(p1, p1, s)
    assert e == 0

    #******************************************************
    #*******************(TRY ME)***************************
    #******************************************************
    '''Run A Complete Game (TicTacToe): 
       the following code will run a complete TicTacToe game using MiniMaxPlayer,     
       if you want to try this, uncomment the following three lines of code.
       Note: it may take 1 or 2 minutes to run
    '''
    #g = TicTacToe()
    #e = g.run_a_game(p1,p1)
    #assert e==0
    #******************************************************
    #******************************************************
    #******************************************************

    #----------------------------------------------
    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    s = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
    for i in range(10):
        e = g.run_a_game(p1, p2, s=s, x=1)
        assert e == 1

    w = 0
    for i in range(10):
        e = g.run_a_game(p2, p2, s=s, x=1)
        w += e
    assert np.abs(w) < 9

    #******************************************************
    #*******************(DO NOT TRY ME:)*******************
    #******************************************************
    ''' Run A Complete Game (Othello): 
Esempio n. 19
0
def test_MCTS_choose_a_move():
    '''(10 points) MCTS choose_a_move'''
    #---------------------
    # Game: TicTacToe
    g = TicTacToe()  # game

    p = MCTSPlayer()
    b = np.array([[0, -1, -1], [0, 1, 0], [0, 0, 0]])
    s = GameState(b, x=1)
    r, c = p.choose_a_move(g, s)
    assert r == 0
    assert c == 0

    b = np.array([[0, 0, -1], [0, 1, -1], [0, 0, 0]])
    s = GameState(b, x=1)
    r, c = p.choose_a_move(g, s)
    assert r == 2
    assert c == 2

    b = np.array([[0, 0, 1], [0, -1, 1], [0, 0, 0]])
    s = GameState(b, x=-1)
    r, c = p.choose_a_move(g, s)
    assert r == 2
    assert c == 2

    p1 = MCTSPlayer()
    p2 = RandomPlayer()
    p3 = MiniMaxPlayer()
    '''random vs MCTS'''
    for i in range(10):
        b = np.array([[0, -1, 1], [-1, 1, -1], [0, -1, -1]])
        s = GameState(b, x=1)
        e = g.run_a_game(p1, p2, s)
        assert e == 1

    for i in range(10):
        b = np.array([[0, -1, 1], [-1, 1, -1], [-1, 1, 0]])
        s = GameState(b, x=1)
        e = g.run_a_game(p1, p2, s)
        assert e == 0
    ''' Minimax vs MCTS '''

    for i in range(10):
        b = np.array([[0, 0, 1], [0, -1, 0], [1, -1, 0]])
        s = GameState(b, x=1)
        e = g.run_a_game(p1, p3, s)
        assert e == 0

    w = 0
    for i in range(10):
        b = np.array([[0, 0, 0], [0, 0, 0], [1, -1, 0]])
        s = GameState(b, x=1)
        e = g.run_a_game(p1, p3, s)
        w += e
    assert w > 1
    ''' MCTS vs MCTS '''
    w = 0
    for i in range(10):
        b = np.array([[0, 0, 0], [1, -1, 0], [0, 0, 0]])
        s = GameState(b, x=1)
        e = g.run_a_game(p1, p1, s)
        w += e
    assert np.abs(w) < 5
    ''' MCTS(n_iter=1) vs MCTS(n_iter=100) '''

    pm1 = MCTSPlayer(1)
    pm100 = MCTSPlayer(100)
    w = 0
    for i in range(10):
        b = np.array([[0, 0, 0], [0, 0, 0], [1, -1, 0]])
        s = GameState(b, x=1)
        e = g.run_a_game(pm100, pm1, s)
        w += e
    assert np.abs(w) > 4

    #----------------------------------------------
    # The AI agent should be compatible with both games: TicTacToe and Othello.
    # now let's test on the game "Othello":

    #---------------------
    # Game: Othello
    g = Othello()  # game
    b = np.array([[0, -1, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])

    for i in range(10):
        s = GameState(b.copy(), x=1)
        e = g.run_a_game(p1, p2, s)
        assert e == 1
    ''' MCTS vs random'''
    s = GameState(b, x=1)
    e = g.run_a_game(p1, p2, s)
    assert e == 1