Esempio n. 1
0
def test_ring_background_estimator(images):
    ring = RingBackgroundEstimator(0.35 * u.deg, 0.3 * u.deg)

    result = ring.run(images)

    in_fov = images["background"].data > 0

    assert_allclose(result["background_ring"].data[in_fov], 2.0)
    assert_allclose(result["alpha"].data[in_fov].mean(), 0.003488538457592745)
    assert_allclose(result["exposure_off"].data[in_fov].mean(),
                    305.1268970794541)
    assert_allclose(result["off"].data[in_fov].mean(), 610.2537941589082)

    assert_allclose(result["off"].data[~in_fov], 0.0)
    assert_allclose(result["exposure_off"].data[~in_fov], 0.0)
    assert_allclose(result["alpha"].data[~in_fov], 0.0)
def run_benchmark():
    # Set up data store and select N_OBS times the observation OBS_ID
    data_store = DataStore.from_dir('$GAMMAPY_EXTRA/test_datasets/cta_1dc/')
    obs_ids = OBS_ID * np.ones(N_OBS)
    obs_list = data_store.obs_list(obs_id=obs_ids)

    target_position = SkyCoord(0, 0, unit='deg', frame='galactic')
    on_radius = 0.2 * u.deg
    on_region = CircleSkyRegion(center=target_position, radius=on_radius)

    bkg_estimator = RingBackgroundEstimator(
        r_in=0.5 * u.deg,
        width=0.2 * u.deg,
    )

    # Define reference image centered on the target
    xref = target_position.galactic.l.value
    yref = target_position.galactic.b.value

    ref_image = SkyImage.empty(
        nxpix=800,
        nypix=600,
        binsz=0.02,
        xref=xref,
        yref=yref,
        proj='TAN',
        coordsys='GAL',
    )

    exclusion_mask = ref_image.region_mask(on_region)
    exclusion_mask.data = 1 - exclusion_mask.data

    image_estimator = IACTBasicImageEstimator(
        reference=ref_image,
        emin=100 * u.GeV,
        emax=100 * u.TeV,
        offset_max=3 * u.deg,
        background_estimator=bkg_estimator,
        exclusion_mask=exclusion_mask,
    )
    result = image_estimator.run(obs_list)
Esempio n. 3
0
def test_map_maker_ring(observations):
    ring_bkg = RingBackgroundEstimator(r_in="0.5 deg", width="0.4 deg")
    geomd = geom(ebounds=[0.1, 1, 10])

    mask = Map.from_geom(geomd)

    regions = CircleSkyRegion(SkyCoord(0, 0, unit="deg", frame="galactic"),
                              radius=0.5 * u.deg)
    mask.data = mask.geom.region_mask([regions], inside=False)

    maker = MapMakerRing(geomd, 2.0 * u.deg, mask, ring_bkg)

    maps = maker.run(observations)
    assert_allclose(np.nansum(maps["on"].data), 21981, rtol=1e-2)
    assert_allclose(np.nansum(maps["exposure_off"].data), 8310.035, rtol=1e-2)
    assert maps["on"].geom.is_image is False

    images = maker.run_images(observations)
    assert_allclose(np.nansum(images["on"].data), 21981, rtol=1e-2)
    assert_allclose(np.nansum(images["exposure_off"].data),
                    109751.45,
                    rtol=1e-2)
    assert images["on"].geom.is_image is True
Esempio n. 4
0
print(ref_image)

# ### Compute images
#
# We use the ring background estimation method, and an exclusion mask that excludes the bright source at the Galactic center.

# In[11]:

exclusion_mask = ref_image.region_mask(on_region)
exclusion_mask.data = 1 - exclusion_mask.data
exclusion_mask.plot()

# In[12]:

bkg_estimator = RingBackgroundEstimator(
    r_in=0.5 * u.deg,
    width=0.2 * u.deg,
)
image_estimator = IACTBasicImageEstimator(
    reference=ref_image,
    emin=100 * u.GeV,
    emax=100 * u.TeV,
    offset_max=3 * u.deg,
    background_estimator=bkg_estimator,
    exclusion_mask=exclusion_mask,
)
images = image_estimator.run(obs_list)
images.names

# ### Show images
#
# Let's define a little helper function and then show all the resulting images that were computed.
Esempio n. 5
0
# ### Choose an exclusion mask.
# We choose an exclusion mask on the position of MSH 1552.

# In[ ]:

regions = CircleSkyRegion(center=pos_msh1552, radius=0.3 * u.deg)
mask = Map.from_geom(geom)
mask.data = mask.geom.region_mask([regions], inside=False)
mask.get_image_by_idx([0]).plot()

# Now, we instantiate the ring background

# In[ ]:

ring_bkg = RingBackgroundEstimator(r_in="0.5 deg", width="0.3 deg")

# To facilitate classical image analysis, we have a special class called `MapMakerRing`. Here, we do the analysis over the integrated energy range. To do an analysis for each image slice of the map (eg: to investigate the significance of the source detection with energy, just call `run` instead of `run_images`

# In[ ]:

get_ipython().run_cell_magic(
    'time', '',
    'im = MapMakerRing(\n    geom=geom,\n    offset_max=2.0 * u.deg,\n    exclusion_mask=mask,\n    background_estimator=ring_bkg,\n)\nimages = im.run_images(observations)'
)

# We will use `compute_lima_on_off_image` in `gammapy.detect` to compute significance and excess maps. A common debug plot during Ring Analysis is to make histograms of the `off` count rates, so we will plot that as well.
#
# For this we will first create a Tophat2DKernel convolution kernel for the significance maps. To convert from angles to pixel scales, we use `geom.pixel_scales`:

# In[ ]:
Esempio n. 6
0
)
# This takes about 10 seconds on my machine
result2 = kbe.run(images)
print("results2")
print(result2.names)
####altro modo stima bkg

obs_list = data_store.obs_list(obs_ids)
target_position = SkyCoord(0, 0, unit='deg', frame='galactic')
on_radius = 0.3 * u.deg
on_region = CircleSkyRegion(center=target_position, radius=on_radius)

exclusion_mask = ref_image.region_mask(on_region)
exclusion_mask.data = 1 - exclusion_mask.data
bkg_estimator = RingBackgroundEstimator(
    r_in=0.5 * u.deg,
    width=0.2 * u.deg,
)
image_estimator = IACTBasicImageEstimator(
    reference=ref_image,
    emin=100 * u.GeV,
    emax=100 * u.TeV,
    #offset_max=3 * u.deg,
    background_estimator=bkg_estimator,
    exclusion_mask=exclusion_mask,
)
images_new = image_estimator.run(obs_list)
print("\n\n\n")
print(images_new.names)
print(result2.names)
print("\n\n\n")
# Let's have a look at the background image and the exclusion mask